description
analysis
-
矩阵乘法好题
-
最朴素的(10pts)的(f[i][j])容易(DP),但是是(O(nm^2))的复杂度
-
于是把(10)分的(DP)写出来,就可以知道(f[i][j]+=f[k][l])的部分可以搞前缀和优化,(O(nm))有(50pts)
-
这个要先弄懂才可以继续搞矩乘
-
可以分成奇数列和偶数列分别(DP),设(f[i],g[i])分别表示某奇数列的第(i)行和偶数列的第(i)行的方案数的前缀和
-
(f[i])和(g[i])都要加上第(i)行前面与他奇偶性相同的方案数方便转移,具体见代码
-
于是(f[i]=g[i-1]+g[i]+g[i+1],g[i]=f[i-1]+f[i]+f[i+1])(注意边界的两个点),可以矩乘优化了
-
具体就是,初始矩阵写成前一半是(f[1..n]),后一半是(g[1..n])
-
想办法矩乘转移到((g[1..n],f’[1..n])),这里举(n=3)的例子
-
((1,0,0,1,1,0)*F=(1,1,0,3,2,1)),因为打表发现(left( egin{matrix} 1,1,2...\ 0,1,2... \ 0,0,1... end{matrix} ight)),这个(3)加上了前面的那个(1)
-
于是由((f[i-1],f[i],f[i+1],g[i-1],g[i],g[i+1])*F=(g[i-1],g[i],g[i+1],f’[i-1],f’[i],f’[i+1]))推矩阵
-
注意(f[i]=g[i-1]+g[i]+g[i+1]),推出来大概就是(left( egin{matrix} 0,0,0,1,0,0\ 0,0,0,0,1,0 \ 0,0,0,0,0,1\ 1,0,0,1,1,0\ 0,1,0,1,1,1\ 0,0,1,0,1,1\ end{matrix} ight))
-
(n=10)的矩阵长这样
- 于是就可以直接上矩乘搞了,答案就为最后两位的和
code
#include<stdio.h>
#include<string.h>
#include<algorithm>
#define MAXN 55
#define mod 30011
#define ll long long
#define fo(i,a,b) for (ll i=a;i<=b;++i)
#define fd(i,a,b) for (ll ia=;i>=b;--i)
using namespace std;
ll n,m;
struct matrix
{
ll a[MAXN<<1][MAXN<<1],n,m;
matrix(){memset(a,0,sizeof(a)),n=m=0;}
matrix(ll x,ll y){memset(a,0,sizeof(a)),n=x,m=y;}
}f,ans,ans1,f1;
inline ll read()
{
ll x=0,f=1;char ch=getchar();
while (ch<'0' || '9'<ch){if (ch=='-')f=-1;ch=getchar();}
while ('0'<=ch && ch<='9')x=x*10+ch-'0',ch=getchar();
return x*f;
}
inline matrix operator*(matrix a,matrix b)
{
matrix c(a.n,b.m);
fo(i,1,a.n)
fo(j,1,b.m)
fo(k,1,a.m)(c.a[i][j]+=a.a[i][k]*b.a[k][j])%=mod;
return c;
}
inline matrix pow(matrix x,ll y)
{
matrix z=x;
while (y)
{
if (y&1)z=z*x;
y>>=1,x=x*x;
}
return z;
}
int main()
{
n=read(),m=read();
ans=ans1=matrix(1,n<<1),f=f1=matrix(n<<1,n<<1);
ans.a[1][1]=ans.a[1][n+1]=ans.a[1][n+2]=f.a[n+1][n+1]=1;
fo(i,n+2,n<<1)f.a[i][i]=f.a[i-1][i]=f.a[i][i-1]=1;
fo(i,1,n)f.a[i][n+i]=f.a[n+i][i]=1;
f1=pow(f,m-3),ans1=ans*f1;
printf("%lld
",(ans1.a[1][n-1]+ans1.a[1][n])%mod);
return 0;
}