zoukankan      html  css  js  c++  java
  • 【POJ1811】【miller_rabin + pollard rho + 快速乘】Prime Test

    Description

    Given a big integer number, you are required to find out whether it's a prime number.

    Input

    The first line contains the number of test cases T (1 <= T <= 20 ), then the following T lines each contains an integer number N (2 <= N < 254).

    Output

    For each test case, if N is a prime number, output a line containing the word "Prime", otherwise, output a line containing the smallest prime factor of N.

    Sample Input

    2
    5
    10
    

    Sample Output

    Prime
    2
    

    Source

    【分析】
    模板题
      1 /*
      2 宋代谢逸
      3 《踏莎行·柳絮风轻》
      4 柳絮风轻,梨花雨细。春阴院落帘垂地。碧溪影里小桥横,青帘市上孤烟起。
      5 镜约关情,琴心破睡。轻寒漠漠侵鸳被。酒醒霞散脸边红,梦回山蹙眉间翠。 
      6 */
      7 #include <cstdio>
      8 #include <cstring>
      9 #include <algorithm>
     10 #include <cmath>
     11 #include <queue>
     12 #include <vector>
     13 #include <iostream>
     14 #include <string>
     15 #include <ctime>
     16 #define LOCAL
     17 const int MAXN = 100000 + 5;
     18 using namespace std;
     19 typedef long long ll;
     20 ll n, Ans;
     21 
     22 //快速乘
     23 long long multi(long long a, long long b, long long c){
     24     if (b == 0) return 0;
     25     if (b == 1) return a % c;
     26     long long tmp = multi(a, b / 2, c);
     27     if (b % 2 == 0) return (tmp + tmp) % c;
     28     else return (((tmp + tmp) % c) + a) % c;
     29 }
     30 ll pow(ll a, ll b, ll p){
     31     if (b == 1) return a % p;
     32     ll tmp = pow(a, b / 2, p);
     33     if (b % 2 == 0) return (multi(tmp, tmp, p));
     34     else return multi(multi(tmp, tmp, p), (a % p), p);
     35 }
     36 //二次探测
     37 bool Sec_Check(ll a, ll p, ll c){
     38     ll tmp = pow(a, p, c);
     39     if (tmp != 1 && tmp != (c - 1)) return 0;//不通过
     40     if (tmp == (c - 1) || (p % 2 != 0)) return 1;
     41     return Sec_Check(a, p / 2, c);
     42 }
     43 bool miller_rabin(ll n){
     44     ll cnt = 20;
     45     while (cnt--){
     46         ll a = (rand()%(n - 1)) + 1;
     47         if (!Sec_Check(a, n - 1, n)) return 0; 
     48     }
     49     return 1;
     50 }
     51 //int f(int ) {return }
     52 long long gcd(long long a, long long b){return b == 0? a : gcd(b, a % b);}
     53 long long BIGRAND() {return rand() * RAND_MAX + rand();}
     54 long long pollard_rho(long long n, long long c){
     55     long long x, y, d;
     56     long long i = 1, k = 2;  
     57      x = ((double)rand()/RAND_MAX*(n - 2)+0.5) + 1;  
     58     y = x;  
     59     while(1){  
     60         i++;
     61           //注意顺序
     62         x = (multi(x, x, n) % n + c) % n;  
     63         d = gcd(y - x + n, n);  
     64         if(1 < d && d < n) return d;  
     65         if(y == x) return n;  
     66         if(i == k){  
     67             y = x;  
     68             k <<= 1;  
     69         }  
     70     }  
     71 }
     72 //
     73 void find(long long n, long long c){
     74     if (n == 1) return;
     75     if (miller_rabin(n)) {
     76         if (Ans == -1) Ans = n;
     77         else Ans = min(Ans, n);
     78         return ;
     79     }
     80     long long p = n;
     81     while (p >= n) p = pollard_rho(n, c--);
     82     find(p, c);
     83     find(n / p, c);
     84     //return find(p, c) + find(n / p, c);
     85 }
     86 
     87 int main(){
     88     int T;
     89     srand(time(0));
     90     
     91     scanf("%d", &T);
     92     while (T--){
     93         scanf("%lld", &n);
     94         if (n != 1 && miller_rabin(n)) printf("Prime
    ");
     95         else {
     96             Ans = -1;
     97             find(n, 15000);
     98             printf("%lld
    ", Ans);
     99         }
    100     }
    101     return 0;
    102 }
    View Code
  • 相关阅读:
    Android学习笔记事件处理机制 希
    DIY我的博客皮肤 希
    CSS学习小札居中问题及解决方案 希
    Entity Framework 教程
    springcahce集成redis 设置过期时间 Hiro
    springboot集成springcache Hiro
    Geotools核心特点以及支持数据的格式和标准
    github使用
    一个jekyll使用大牛的博客
    在没有root权限情况下安装python
  • 原文地址:https://www.cnblogs.com/hoskey/p/4372649.html
Copyright © 2011-2022 走看看