zoukankan      html  css  js  c++  java
  • hdu4336压缩率大方的状态DP

    Card Collector

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 2141    Accepted Submission(s): 1008
    Special Judge


    Problem Description
    In your childhood, do you crazy for collecting the beautiful cards in the snacks? They said that, for example, if you collect all the 108 people in the famous novel Water Margin, you will win an amazing award. 

    As a smart boy, you notice that to win the award, you must buy much more snacks than it seems to be. To convince your friends not to waste money any more, you should find the expected number of snacks one should buy to collect a full suit of cards.
     

    Input
    The first line of each test case contains one integer N (1 <= N <= 20), indicating the number of different cards you need the collect. The second line contains N numbers p1, p2, ..., pN, (p1 + p2 + ... + pN <= 1), indicating the possibility of each card to appear in a bag of snacks. 

    Note there is at most one card in a bag of snacks. And it is possible that there is nothing in the bag.
     

    Output
    Output one number for each test case, indicating the expected number of bags to buy to collect all the N different cards.

    You will get accepted if the difference between your answer and the standard answer is no more that 10^-4.
     

    Sample Input
    1 0.1 2 0.1 0.4
     

    Sample Output
    10.000 10.500
    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <string>
    #include <queue>
    #include <algorithm>
    #include <map>
    #include <cmath>
    #include <iomanip>
    #define INF 99999999
    typedef long long LL;
    using namespace std;
    
    const int MAX=(1<<20)+10;
    const double eps=1e-4;
    int n;
    double dp[MAX],p[MAX];
    
    int main(){
    	while(~scanf("%d",&n)){
    		double p2=1; 
    		for(int i=0;i<n;++i){scanf("%lf",&p[i]);p2-=p[i];}
    		int bit=1<<n;
    		dp[bit-1]=0;
    		for(int i=bit-2;i>=0;--i){
    			double p1=p2,ans=0;
    			for(int j=0;j<n;++j){
    				if(i&(1<<j)){//j这张卡片存在 
    					p1+=p[j];
    				}else{
    					ans+=p[j]*(dp[i+(1<<j)]+1);
    				}
    				dp[i]=(ans+p1)/(1-p1);
    			}
    		}
    		printf("%.4f
    ",dp[0]);//这里保留4位小数是由于题目最后一句话 
    	}
    	return 0;
    }



    版权声明:本文博客原创文章,博客,未经同意,不得转载。

  • 相关阅读:
    算法笔记--贪心
    算法笔记--递归
    算法笔记--哈希
    算法笔记--散列
    算法笔记--排序算法
    算法笔记--简单编程训练
    算法笔记--简单模拟
    算法笔记--注意事项
    3.4 空间滤波
    【解题报告】【概率DP入门】 P1850 换教室
  • 原文地址:https://www.cnblogs.com/hrhguanli/p/4619724.html
Copyright © 2011-2022 走看看