zoukankan      html  css  js  c++  java
  • Codeforces Round #333 (Div. 2) B

    B. Approximating a Constant Range
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    When Xellos was doing a practice course in university, he once had to measure the intensity of an effect that slowly approached equilibrium. A good way to determine the equilibrium intensity would be choosing a sufficiently large number of consecutive data points that seems as constant as possible and taking their average. Of course, with the usual sizes of data, it's nothing challenging — but why not make a similar programming contest problem while we're at it?

    You're given a sequence of n data points a1, ..., an. There aren't any big jumps between consecutive data points — for each 1 ≤ i < n, it's guaranteed that |ai + 1 - ai| ≤ 1.

    A range [l, r] of data points is said to be almost constant if the difference between the largest and the smallest value in that range is at most 1. Formally, let M be the maximum and m the minimum value of ai for l ≤ i ≤ r; the range [l, r] is almost constant if M - m ≤ 1.

    Find the length of the longest almost constant range.

    Input

    The first line of the input contains a single integer n (2 ≤ n ≤ 100 000) — the number of data points.

    The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 100 000).

    Output

    Print a single number — the maximum length of an almost constant range of the given sequence.

    Sample test(s)
    Input
    5
    1 2 3 3 2
    Output
    4
    Input
    11
    5 4 5 5 6 7 8 8 8 7 6
    Output
    5
    Note

    In the first sample, the longest almost constant range is [2, 5]; its length (the number of data points in it) is 4.

    In the second sample, there are three almost constant ranges of length 4: [1, 4], [6, 9] and [7, 10]; the only almost constant range of the maximum length 5 is [6, 10].

    题意:求最大区间长度  区间要求满足:区间最大值与最小值的差小于等于1

    题解:

    例如

    5

    1 2 3 3 2

    差值分别为 2-1=1;

                   3-2=1;

                   3-3=0;

                   2-3=-1;  另外  it's guaranteed that |ai + 1 - ai| ≤ 1.

    可以判断 当连续的差值或相隔差值为0 的两个差值 相等时 该段区间结束 更新最大值

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    using namespace std;
    int n,a;
    int main()
    {
        scanf("%d",&n);
        scanf("%d",&a);
        int cha=0;
        int judge=0;
        int l=0,r=0;
        int ans=0,exm;
        for(int i=1; i<n; i++)
        {
            scanf("%d",&exm);
            cha=exm-a;//计算差值
            a=exm;
            if(cha==0)//差值为零 相等时 
                continue;
            if(cha!=judge)//当前差值与 之前一个差值比较
            {
                judge=cha;//更新到当前区间
                r=i;
            }
            else
            {
                if(i-l>ans)//更新区间大小
                    ans=i-l;
                l=r;
                r=i;
            }
        }
        if(n-l>ans)//特列 后端 都相等
            ans=n-l;
        cout<<ans<<endl;
        return 0;
    }
    

      

  • 相关阅读:
    SAP模块
    生產製造管理模块
    .NET Framework 3.5 SP1安装时下载文件问题及精简方法2(转)
    .NET Framework 3.5 SP1安装时下载文件问题及精简方法(转)
    .net remoting构架(part 2)转
    vbs下一些取特殊路径的方法总结(转)
    SQL安装命令行详解(转)
    InstallShield Basic MSI工程常见问题解答(转)
    在64位平台使用SQL Server Compact(转)
    vbs 创建多级目录方法
  • 原文地址:https://www.cnblogs.com/hsd-/p/5132113.html
Copyright © 2011-2022 走看看