zoukankan      html  css  js  c++  java
  • HDU 4389 数位dp

    X mod f(x)

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 2992    Accepted Submission(s): 1171


    Problem Description
    Here is a function f(x):
       int f ( int x ) {
        if ( x == 0 ) return 0;
        return f ( x / 10 ) + x % 10;
       }

       Now, you want to know, in a given interval [A, B] (1 <= A <= B <= 109), how many integer x that mod f(x) equal to 0.
     
    Input
       The first line has an integer T (1 <= T <= 50), indicate the number of test cases.
       Each test case has two integers A, B.
     
    Output
       For each test case, output only one line containing the case number and an integer indicated the number of x.
     
    Sample Input
    2 1 10 11 20
     
    Sample Output
    Case 1: 10 Case 2: 3
     
    Author
    WHU
     
    Source
     
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstdlib>
     4 #include <cstring>
     5 #include <algorithm>
     6 #include <stack>
     7 #include <queue>
     8 #include <cmath>
     9 #include <map>
    10 #define ll  __int64
    11 #define dazhi 2147483647
    12 #define bug() printf("!!!!!!!")
    13 #define M 100005
    14 using namespace  std;
    15 int bit[10];
    16 int dp[10][82][82][82];
    17 int  n;
    18 int  functi(int pos,int mod,int xx ,int sum,bool flag)
    19 {
    20     if(pos==0) return (xx==sum&&mod%sum==0);
    21     if(flag&&dp[pos][mod][xx][sum]!=-1) return dp[pos][mod][xx][sum];
    22     ll x=flag ? 9 : bit[pos];
    23     ll ans=0;
    24     for(ll i=0;i<=x;i++)
    25     ans+=functi(pos-1,(mod*10+i)%xx,xx,sum+i,flag||i<x);
    26     if(flag)
    27         dp[pos][mod][xx][sum]=ans;
    28     return ans;
    29 }
    30 int  fun(int x)
    31 {
    32     int len=0;
    33     while(x)
    34     {
    35         bit[++len]=x%10;
    36         x/=10;
    37     }
    38     ll re=0;
    39     for(int i=1;i<=81;i++)
    40         re+=functi(len,0,i,0,0);
    41     return re;
    42 }
    43 int main()
    44 {
    45    int t;
    46    int  l,r;
    47    while(scanf("%d",&t)!=EOF)
    48    {
    49        memset(dp,-1,sizeof(dp));
    50        for(int i=1;i<=t;i++)
    51        {
    52            scanf("%d %d",&l,&r);
    53            int exm=fun(r);
    54            printf("Case %d: %d
    ",i,exm-fun(l-1));
    55        }
    56    }
    57     return 0;
    58 }
  • 相关阅读:
    leetcode-832-Flipping an Image
    leetcode-830-Positions of Large Groups
    leetcode-824-Goat Latin(字符串的处理)
    leetcode-821-Shortest Distance to a Character
    leetcode-819-Most Common Word(词频统计)
    HDU 4729 An Easy Problem for Elfness(树链剖分边权+二分)
    python爬虫(1)——正则表达式
    利用MySQL之federated引擎实现DBLink功能
    HTTPS原理及流程
    NIO、多路复用的终极奥义
  • 原文地址:https://www.cnblogs.com/hsd-/p/6597263.html
Copyright © 2011-2022 走看看