zoukankan      html  css  js  c++  java
  • Apache Spark技术实战之8:Standalone部署模式下的临时文件清理

    未经本人同意严禁转载,徽沪一郎。

    概要

    在Standalone部署模式下,Spark运行过程中会创建哪些临时性目录及文件,这些临时目录和文件又是在什么时候被清理,本文将就这些问题做深入细致的解答。

    从资源使用的方面来看,一个进程运行期间会利用到这四个方面的资源,分别是CPU,内存,磁盘和网络。进程退出之后,CPU,内存和网络都会由操作系统负责释放掉,但是运行过程中产生临时文件如果进程自己不在退出之前有效清除,就会留下一地鸡毛,浪费有效的存储空间。

    部署时的第三方依赖

    再提出具体的疑问之前,先回顾一下standalone的部署模式

    在standalone下又分为client模式和cluster模式,其中client模式下,driver和client运行于同一JVM中,不由worker启动,该JVM进程直到spark application计算完成返回结果后才退出。如下图所示。

    而在cluster模式下,driver由worker启动,client在确认spark application成功提交给cluster后直接退出,并不等待spark application运行结果返回。如下图所示

    从部署图来进行分析,每个JVM进程在启动时的文件依赖如何得到满足。

    1. Master进程最为简单,除了spark jar包之外,不存在第三方库依赖
    2. Driver和Executor在运行的时候都有可能存在第三方包依赖,分开来讲
      1. Driver比较简单,spark-submit在提交的时候会指定所要依赖的jar文件从哪里读取
      2. Executor由worker来启动,worker需要下载Executor启动时所需要的jar文件,那么从哪里下载呢。

    为了解决Executor启动时依赖的Jar问题,Driver在启动的时候要启动HttpFileServer存储第三方jar包,然后由worker从HttpFileServer来获取。为此HttpFileServer需要创建相应的目录,而Worker也需要创建相应的目录。

    HttpFileServer创建目录的过程详见于SparkEnv.scala中create函数。

    spark会为每一个提交的application生成一个文件夹,默认位于$SPARK_HOME/work目录下,用以存放从HttpFileServer下载下来的第三方库依赖及Executor运行时生成的日志信息。

    实验1

    运行spark-shell,查看在/tmp目录下会新产生哪些目录。

    #$SPARK_HOME/bin/spark-shell

    在/tmp目录下会新增四个与spark-shell相关的文件夹

    spark+随机数目录

      分别用于driver本身,driver创建的tmp目录,httpfileserver创建的目录

    spark-local目录

      用以存放executor执行过程中生成的shuffle output和cache的内容

    运行中的临时文件

    Executor在运行的时候,会生成Shuffle Output,如果对RDD进行Cache的话,还有可能会将RDD的内容吐到磁盘中。这些都意味着需要有一个文件夹来容纳这些东西。

    上文中提到的形如spark-local-*的目录就是用以存储executor运行时生成的临时文件。

    可以通过两个简单的实验来看spark-local-*目录下内容的变化。

    实验2:不进行RDD Cache

    进入spark-shell之后运行

    spark-shell>sc.textFile(“README.md”).flatMap(l=>l.split(“ “)).map(w=>(w,1)).reduceByKey(_ + _).foreach(println)
    

    上述指令会生成两个不同的Stage, 所以会有Shuffle Output,具体划分原因就不再细述了。

    如果使用的是spark 1.2.x,可以看到有在spark-local-*目录下有index文件生成。

    实验3: 进行RDD Cache

    进入spark-shell之后运行

    spark-shell>val rdd1 = sc.textFile(“README.md”).flatMap(l=>l.split(“ “)).map(w=>(w,1)).reduceByKey(_ + _)
    spark-shell> rdd1.persist(MEMORY_AND_DISK_SER)
    spark-shell>rdd1.foreach(println)
    

    上述指令执行后,不仅会有index文件还会有形如rdd*的文件生成,这些rdd打头的文件就是cache内容。

    配置项

    可以通过在$SPARK_HOME/conf/spark-env.sh中指定配置内容来更改默认的存储位置。

    SPARK_WORK_DIR 指定work目录,默认是$SPARK_HOME/work子目录

    SPARK_LOCAL_DIRS 指定executor运行生成的临时文件目录,默认是/tmp,由于/tmp目录有可能是采用了tmpfs,建议在实际部署中将其更改到其它目录

    文件的清理

    上述过程中生成的临时文件在什么时候会被删除掉呢?

    也许第一感觉就是spark application结束运行的时候呗,直觉有时不见得就是对的。

    SPARK_LOCAL_DIRS下的产生的文件夹,确实会在应用程序退出的时候自动清理掉,如果观察仔细的话,还会发现在spark_local_dirs目录有有诸如*_cache和*_lock的文件,它们没有被自动清除。这是一个BUG,可以会在spark 1.3中加以更正。有关该BUG的具体描述,参考spark-4323 https://issues.apache.org/jira/browse/SPARK-4323

    $SPARK_LOCAL_DIRS下的*_cache文件是为了避免同一台机器中多个executor执行同一application时多次下载第三方依赖的问题而引进的patch,详见JIRA case spark-2713. 对就的代码见spark/util/Utils.java中的fetchFile函数。https://issues.apache.org/jira/browse/SPARK-2713

    如果已经在使用了,有什么办法来清除呢?暴力删除,不管三七二十一,过一段时间将已经存在的cache和lock全部删除。这不会有什么副作用,大不了executor再去下载一次罢了

    find $SPARK_LOCAL_DIRS -max-depth 1 -type f -mtime 1 -exec rm -- {} ;
    

    而SPARK_WORK_DIR目录下的形如app-timestamp-seqid的文件夹默认不会自动清除。

    那么可以设置哪些选项来自动清除已经停止运行的application的文件夹呢?当然有。

    在spark-env.sh中加入如下内容

    SPARK_WORKER_OPTS=”-Dspark.worker.cleanup.enabled=true”
    

    注意官方文档中说不管程序是否已经停止,都会删除文件夹,这是不准确的,只有停止掉的程序文件夹才会被删除,我已提交相应的PR.

    如果Spark应用程序需要长时间运行,生成的许多shuffle output何时再清理呢?可以通过配置spark.cleaner.ttl来设置清理的时间。

    实验4

    写一个简单的WordCount,然后以Standalone Cluster模式提交运行,察看$SPARK_LOCAL_DIRS下文件内容的变化。

    import org.apache.spark._
    import org.apache.spark.{SparkConf, SparkContext}
    import org.apache.spark.SparkContext._
    import java.util.Date
    object HelloApp {
      def main(args: Array[String]): Unit = {
        val conf = new SparkConf()
        val sc = new SparkContext()
        val fileName = "$SPARK_HOME/README.md"
        val rdd1 = sc.textFile(fileName).flatMap(l => l.split(" ")).map(w => (w, 1))
        rdd1.reduceByKey(_ + _).foreach(println)
        
        var i: Int = 0
        while ( i < 10 ) {
          Thread.sleep(10000)
          i = i + 1
        }
      }
    }
    

    提交运行

    spark-submit –class HelloApp –master spark://127.0.0.1:7077  --deploy-mode cluster HelloApp.jar	
    

    小结

    本文通过几个简单易行的实验来观测standalone模式下临时文件的产生和清除,希望有助于理解spark中磁盘资源的申请和释放过程。

    Spark部署时相关的配置项比较多,如果先进行分类,然后再去配置会容易许多,分类有CPUMemoryNetworkSecurityDiskAkka相关。

    参考资料

    1. https://spark.apache.org/docs/1.2.0/submitting-applications.html
    2. https://spark.apache.org/docs/1.2.0/spark-standalone.html
    3. http://mail-archives.apache.org/mod_mbox/spark-commits/201410.mbox/%3C2c2ce06abc7d48d48f17f8e458a53219@git.apache.org%3E
    4. https://issues.apache.org/jira/browse/SPARK-4323
    5. https://issues.apache.org/jira/browse/SPARK-2713
  • 相关阅读:
    Django Form组件实例:登录界面[Form表单提交,Ajax提交]
    开张啦!
    CART剪枝
    TensorFlow全新的数据读取方式:Dataset API入门教程
    关于神经网络中的padding
    cs231n(一)
    协方差与pearson相关系数
    Auto Encoder
    markdown公式编辑参考
    Python使用日常
  • 原文地址:https://www.cnblogs.com/hseagle/p/4302591.html
Copyright © 2011-2022 走看看