zoukankan      html  css  js  c++  java
  • 傅里叶级数(FS)以及FT、DTFT、DFS和DFT

    • 傅里叶级数(FS)

    周期为 T 的函数$f(t), omega=frac{2pi}{T}$. 正交基为${ e^{jnomega t} },n=0,pm1,pm2,cdots$。

    $$
     f(t)=sum_{n=-infty}^{infty}C_ne^{-jomega nt} \
    C_n=frac{<f(t),e^{jnomega t}>}{<e^{jnomega t},e^{jnomega t}>}=frac{int_Tf(t)e^{-jnomega t}dt}{int_T e^{jnomega t}e^{-jnomega t}dt}=frac{1}{T}int_Tf(t)e^{-jnomega t}dt
    $$

    • 连续时间的傅里叶变换(FT)

    $$
    F(omega)=int_{-infty}^infty f(t)e^{-jomega t}dt \
    f(t)=frac{1}{2pi}int_{-infty}^infty F(omega)e^{j\,omega t}domega
    $$

    • 离散时间序列的傅里叶变换(DTFT)

    它用于离散非周期序列分析对应频域连续周期(周期为 $2pi$),条件是 $x(n)$ 绝对可和 或者 能量有限,即 $sum_{n=-infty}^{infty}|x(n)|< infty  qquad  sum_{n=-infty}^{infty}|x(n)|^2< infty $。

    $$   X(e^{jomega})=sum_{n=-infty}^{infty}x(n)e^{-jomega \,n}     qquad   (1)       \ x(n) = frac{1}{2pi}int_{-pi}^{pi}X(e^{jomega})e^{jomega n}domega   qquad  (2)    $$     

    式(1)中,$omega$ 为数字角频率,它是模拟域频率 $Omega$ 对采样频率 $f_s$ 的归一化,即 $omega = Omega T_s = Omega / f_s $

    • Z变换

    由$quad z = e^{jomega} $代入上式得

    $$  X(z) = sum_{n=-infty}^{infty}x(n)z^{-n}  $$

    • 周期序列的离散傅里叶级数(DFS)

    x(n) 是周期为 N 的周期序列,可以看做X(k)的傅里叶级数频域展开,离散周期 ---> 周期离散,周期都为N。
    $$   ilde X (k)=sum_{n=0}^{N-1} ilde x(n)e^{-jfrac{2pi}{N}nk}=sum_{n=0}^{N-1}  ilde x(n)W_{N}^{nk} qquad qquad k in mathbb{Z} \    ilde x(n)=frac{1}{N}sum_{k=0}^{N-1}  ilde X(k)e^{jfrac{2pi}{N}nk}=frac{1}{N}sum_{k=0}^{N-1}  ilde X(k)W_N^{-nk}  qquad qquad n in mathbb{Z} \  W_N=e^{-jfrac{2pi}{N}}                          $$

    • 有限长序列的离散傅里叶变换(DFT)

    x(n) 为有限长序列,长度为 N 。其他值都为 0 。

    $$  X(k)=sum_{n=0}^{N-1}x(n)W_N^{-nk} qquad 0leqslant k leqslant N-1  \  x(n) = frac{1}{N}sum_{k=0}^{N-1}X(k)W_N^{-nk} qquad 0leqslant n leqslant N-1  $$

    • DFT 与 DTFT 、z变换 的关系

    $$  X(k) =X(e^{jomega})|_{omega =frac{2pi}{N}k}  \  X(k) = X(z)|_{z=W_N^{-k}}  $$

     

     参考:http://www.cnblogs.com/BitArt/archive/2012/11/24/2786390.html


    Matlab仿真信号的抽样,CFT,DFT 和 FFT

    ts=0.5; %采样时间间隔
    df=1.0;
    fs = 1/ts;  %采样频率
    n2 = 50/ts;  %time=[0,50]之间采样
    n1 = fs/df;
    N = 2^(max(nextpow2(n1),nextpow2(n2))); %nextpow2(N) returns the first P such that 2.^P >= abs(N).  
              %当序列是2的幂次方时,FFT高效
    df = fs/N;  %设置分辨率
    t = 0:0.01:50;
    y = cos(2/5*pi*t);
    subplot(2,2,1);
    plot(t,y,'k:');  %绘制余弦信号
    hold on
    t2=0:ts:50;
    y2=cos(2/5*pi*t2);
    stem(t2,y2,'k');     % 画火柴杆图,对余弦信号抽样
    axis([0 10 -1.2,1.2]);
    title('抽样信号: 
    m x_{s}(t)');
    xlabel('t');
    line([0 10],[0 0],'color',[0 0 0]);
    hold off
    
    k=-N:N;
    w = df*k;
    Y = 0.01*y*exp(-j*2*pi*t'*w);% 计算CFT
    Y=abs(Y);
    subplot(2,2,2);
    plot(w,Y,'k');
    axis([-fs/2-0.5,fs/2+0.5,0,8*pi+0.5]);
    title('连续傅里叶变换: X(f)');
    xlabel('f');
    
    subplot(2,2,3);
    Y1=y2*exp(-j*2*pi*t2'*w); % 计算离散傅里叶变换
    Y1=Y1/fs;
    plot(w,abs(Y1),'k');
    title('离散傅里叶变换 
    m X_{s}(f)');
    xlabel('f');
    axis([-fs/2-1,fs/2+1,0,8*pi+0.5]);
    
    Y2=fft(y2,N); %使用FFT计算离散傅里叶变换
    Y2=Y2/fs;
    f=[0:df:df*(N-1)]-fs/2; %调整频率坐标
    subplot(2,2,4);
    plot(f,fftshift(abs(Y2)),'k');
    axis([-fs/2-0.5,fs/2+0.5,0,8*pi+0.5]);
    title('快速傅里叶变换:
    m X_{s}(f) ');
    xlabel('f');
    

      

     由此可见,FFT 可以很好地表现 CFT 的频谱图。计算又快,所以用抽样信号的 FFT 代替 连续信号的 CFT。

    常记溪亭日暮,沉醉不知归路。兴尽晚回舟,误入藕花深处。争渡,争渡,惊起一滩鸥鹭。

    昨夜雨疏风骤,浓睡不消残酒。试问卷帘人,却道海棠依旧。知否?知否?应是绿肥红瘦。
  • 相关阅读:
    关于 语文物理 和 数学物理
    黎耀天 共量子 我拍了 几张照片 给你们 当 素材
    看了 陈记抄 同学 的 《随便聊聊之量子力学中的散射理论》
    极坐标系 下的 牛顿第二定律
    jQuery 工具类库集锦
    Javascript跨域问题解决方案
    js禁止从浏览器缓存读取消息
    关于双击事件.MouseEvent.DOUBLE_CLICK
    div的打开与关闭js
    利用通道完成文件的复制 (非直接缓存区)
  • 原文地址:https://www.cnblogs.com/htj10/p/8567065.html
Copyright © 2011-2022 走看看