cathetus(直角边); hypotenuse(斜边)
spoj:Structures
给定三角形的直角边,问可以有多少种三角形。 T<=10 , N<=1e15 ,times<=1s.
spoj:Shared cathetus (easy)
给定三角形的直角边,问可以有多少种三角形。T<=1e5,N<=1e9,times<=1.899s.
spoj:Pythagorean Triple Counting1
给定三角形的直角边,问可以有多少种三角形。T<=1e3,N<=1e15,times<=30s.
spoj:Pythagorean Triple Counting2
给定三角形的直角边,问可以有多少种三角形。T<=1e3,N<=1e15,times<=1s.
spoj:Pythagorean triples (medium)
给出N;(N<1.2e8),问有多少个三角形的斜边小于等于N。tiems:1s-15s
spoj:Counting Pythagorean Triples
给出N;(N<1.2e12),问有多少个三角形的斜边小于等于N。tiems:1s-15s
ZOJ1574:Pythagorean Triples
求第N个prim直角三角形(即a和b互素)。按a,b的优先度关键字排序。N<1e5。
EIJ127:Pythagorean triples
求第N直角三角形,按c,a,b的优先关键字排序。N<1e6。
CIRCIRC - Missing Side
给出三角形两边,求第三边。使得这个三角形的外接三角形面积减内接三角形面积最小。
codeforces 707 C: Pythagorean Triples
给定三角形一条边(直角边或斜边),输出其他两条边。T=1,N<=1e9;
当a>1,为奇数, 令x=(a-1)/2; b=2*x*(x+1),c=2*x*(x+1)+1; 当a>2,为偶数,令x=a/2; b=x*x-1,c=x*x+1;
#include<bits/stdc++.h> #define ll long long using namespace std; int main() { ll N,x,b,c; scanf("%lld",&N); if(N==1||N==2) printf("-1 "); else { x=N/2; if(N&1LL) b=2*x*(x+1),c=b+1; else b=x*x-1,c=b+2; printf("%lld %lld ",b,c); } return 0; }
There are 16 primitive Pythagorean triples with c ≤ 100:
(3, 4, 5) | (5, 12, 13) | (8, 15, 17) | (7, 24, 25) |
(20, 21, 29) | (12, 35, 37) | (9, 40, 41) | (28, 45, 53) |
(11, 60, 61) | (16, 63, 65) | (33, 56, 65) | (48, 55, 73) |
(13, 84, 85) | (36, 77, 85) | (39, 80, 89) | (65, 72, 97) |
Note, for example, that (6, 8, 10) is not a primitive Pythagorean triple, as it is a multiple of (3, 4, 5). Each of these low-c points forms one of the more easily recognizable radiating lines in the scatter plot.
Additionally these are all the primitive Pythagorean triples with 100 < c ≤ 300:
(20, 99, 101) | (60, 91, 109) | (15, 112, 113) | (44, 117, 125) |
(88, 105, 137) | (17, 144, 145) | (24, 143, 145) | (51, 140, 149) |
(85, 132, 157) | (119, 120, 169) | (52, 165, 173) | (19, 180, 181) |
(57, 176, 185) | (104, 153, 185) | (95, 168, 193) | (28, 195, 197) |
(84, 187, 205) | (133, 156, 205) | (21, 220, 221) | (140, 171, 221) |
(60, 221, 229) | (105, 208, 233) | (120, 209, 241) | (32, 255, 257) |
(23, 264, 265) | (96, 247, 265) | (69, 260, 269) | (115, 252, 277) |
(160, 231, 281) | (161, 240, 289) | (68, 285, 293) |