一、DataSet API之Data Sources(消费者之数据源)
介绍:
flink提供了大量的已经实现好的source方法,你也可以自定义source 通过实现sourceFunction接口来自定义无并行度的source, 或者你也可以通过实现ParallelSourceFunction 接口 or 继承RichParallelSourceFunction 来自定义有并行度的source。
类型:
基于文件
readTextFile(path) 读取文本文件,文件遵循TextInputFormat 读取规则,逐行读取并返回。
基于集合
fromCollection(Collection) 通过java 的collection集合创建一个数据流,集合中的所有元素必须是相同类型的。
代码实现:
1、fromCollection
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
object StreamingFromCollectionScala {
def main(args: Array[String]): Unit = {
val env = StreamExecutionEnvironment.getExecutionEnvironment
//隐式转换
import org.apache.flink.api.scala._
val data = List(10,15,20)
val text = env.fromCollection(data)
//针对map接收到的数据执行加1的操作
val num = text.map(_+1)
num.print().setParallelism(1)
env.execute("StreamingFromCollectionScala")
}
}
package xuwei.tech.batch;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.DataSet;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.operators.DataSource;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.util.Collector;
/**
*/
public class BatchWordCountJava {
public static void main(String[] args) throws Exception{
val data = List(10,15,20)
String outPath = "D:\data\result";
//获取运行环境
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
//获取文件中的内容
val text = env.fromCollection(data)
DataSet<Tuple2<String, Integer>> counts = text.flatMap(new Tokenizer()).groupBy(0).sum(1);
counts.writeAsCsv(outPath,"
"," ").setParallelism(1);
env.execute("batch word count");
}
public static class Tokenizer implements FlatMapFunction<String,Tuple2<String,Integer>>{
public void flatMap(String value, Collector<Tuple2<String, Integer>> out) throws Exception {
String[] tokens = value.toLowerCase().split("\W+");
for (String token: tokens) {
if(token.length()>0){
out.collect(new Tuple2<String, Integer>(token,1));
}
}
}
}
}
2、readTextFile
package xuwei.tech.batch;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.DataSet;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.operators.DataSource;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.util.Collector;
/**
* Created by xuwei.tech on 2018/10/8.
*/
public class BatchWordCountJava {
public static void main(String[] args) throws Exception{
String inputPath = "D:\data\file";
String outPath = "D:\data\result";
//获取运行环境
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
//获取文件中的内容
DataSource<String> text = env.readTextFile(inputPath);
DataSet<Tuple2<String, Integer>> counts = text.flatMap(new Tokenizer()).groupBy(0).sum(1);
counts.writeAsCsv(outPath,"
"," ").setParallelism(1);
env.execute("batch word count");
}
public static class Tokenizer implements FlatMapFunction<String,Tuple2<String,Integer>>{
public void flatMap(String value, Collector<Tuple2<String, Integer>> out) throws Exception {
String[] tokens = value.toLowerCase().split("\W+");
for (String token: tokens) {
if(token.length()>0){
out.collect(new Tuple2<String, Integer>(token,1));
}
}
}
}
}
二、DataSet API之Transformations
介绍:
- Map:输入一个元素,然后返回一个元素,中间可以做一些清洗转换等操作
- FlatMap:输入一个元素,可以返回零个,一个或者多个元素
- MapPartition:类似map,一次处理一个分区的数据【如果在进行map处理的时候需要获取第三方资源链接,建议使用MapPartition】
- Filter:过滤函数,对传入的数据进行判断,符合条件的数据会被留下
- Reduce:对数据进行聚合操作,结合当前元素和上一次reduce返回的值进行聚合操作,然后返回一个新的值
- Aggregate:sum、max、min等
- Distinct:返回一个数据集中去重之后的元素,data.distinct()
- Join:内连接
- OuterJoin:外链接
- Cross:获取两个数据集的笛卡尔积
- Union:返回两个数据集的总和,数据类型需要一致
- First-n:获取集合中的前N个元素
- Sort Partition:在本地对数据集的所有分区进行排序,通过sortPartition()的链接调用来完成对多个字段的排序
代码实现:
1、broadcast(广播变量)
package xuwei.tech.batch.batchAPI;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.functions.RichMapFunction;
import org.apache.flink.api.java.DataSet;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.operators.DataSource;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.configuration.Configuration;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
/**
* broadcast广播变量
*
*
*
* 需求:
* flink会从数据源中获取到用户的姓名
*
* 最终需要把用户的姓名和年龄信息打印出来
*
* 分析:
* 所以就需要在中间的map处理的时候获取用户的年龄信息
*
* 建议吧用户的关系数据集使用广播变量进行处理
*
*
*
*
* 注意:如果多个算子需要使用同一份数据集,那么需要在对应的多个算子后面分别注册广播变量
*/
public class BatchDemoBroadcast {
public static void main(String[] args) throws Exception{
//获取运行环境
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
//1:准备需要广播的数据
ArrayList<Tuple2<String, Integer>> broadData = new ArrayList<>();
broadData.add(new Tuple2<>("zs",18));
broadData.add(new Tuple2<>("ls",20));
broadData.add(new Tuple2<>("ww",17));
DataSet<Tuple2<String, Integer>> tupleData = env.fromCollection(broadData);
//1.1:处理需要广播的数据,把数据集转换成map类型,map中的key就是用户姓名,value就是用户年龄
DataSet<HashMap<String, Integer>> toBroadcast = tupleData.map(new MapFunction<Tuple2<String, Integer>, HashMap<String, Integer>>() {
@Override
public HashMap<String, Integer> map(Tuple2<String, Integer> value) throws Exception {
HashMap<String, Integer> res = new HashMap<>();
res.put(value.f0, value.f1);
return res;
}
});
//源数据
DataSource<String> data = env.fromElements("zs", "ls", "ww");
//注意:在这里需要使用到RichMapFunction获取广播变量
DataSet<String> result = data.map(new RichMapFunction<String, String>() {
List<HashMap<String, Integer>> broadCastMap = new ArrayList<HashMap<String, Integer>>();
HashMap<String, Integer> allMap = new HashMap<String, Integer>();
/**
* 这个方法只会执行一次
* 可以在这里实现一些初始化的功能
*
* 所以,就可以在open方法中获取广播变量数据
*
*/
@Override
public void open(Configuration parameters) throws Exception {
super.open(parameters);
//3:获取广播数据
this.broadCastMap = getRuntimeContext().getBroadcastVariable("broadCastMapName");
for (HashMap map : broadCastMap) {
allMap.putAll(map);
}
}
@Override
public String map(String value) throws Exception {
Integer age = allMap.get(value);
return value + "," + age;
}
}).withBroadcastSet(toBroadcast, "broadCastMapName");//2:执行广播数据的操作
result.print();
}
}
2、IntCounter(累加器)
package xuwei.tech.batch.batchAPI;
import org.apache.flink.api.common.JobExecutionResult;
import org.apache.flink.api.common.accumulators.IntCounter;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.functions.RichMapFunction;
import org.apache.flink.api.java.DataSet;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.operators.DataSource;
import org.apache.flink.api.java.operators.MapOperator;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.configuration.Configuration;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
/**
* 全局累加器
*
* counter 计数器
*
* 需求:
* 计算map函数中处理了多少数据
*
*
* 注意:只有在任务执行结束后,才能获取到累加器的值
*
*
*
* Created by xuwei.tech on 2018/10/8.
*/
public class BatchDemoCounter {
public static void main(String[] args) throws Exception{
//获取运行环境
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
DataSource<String> data = env.fromElements("a", "b", "c", "d");
DataSet<String> result = data.map(new RichMapFunction<String, String>() {
//1:创建累加器
private IntCounter numLines = new IntCounter();
@Override
public void open(Configuration parameters) throws Exception {
super.open(parameters);
//2:注册累加器
getRuntimeContext().addAccumulator("num-lines",this.numLines);
}
//int sum = 0;
@Override
public String map(String value) throws Exception {
//如果并行度为1,使用普通的累加求和即可,但是设置多个并行度,则普通的累加求和结果就不准了
//sum++;
//System.out.println("sum:"+sum);
this.numLines.add(1);
return value;
}
}).setParallelism(8);
//result.print();
result.writeAsText("d:\data\count10");
JobExecutionResult jobResult = env.execute("counter");
//3:获取累加器
int num = jobResult.getAccumulatorResult("num-lines");
System.out.println("num:"+num);
}
}
3、cross(获取笛卡尔积)
package xuwei.tech.batch.batchAPI;
import org.apache.flink.api.common.functions.JoinFunction;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.operators.CrossOperator;
import org.apache.flink.api.java.operators.DataSource;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple3;
import java.util.ArrayList;
/**
* 获取笛卡尔积
*
* Created by xuwei.tech on 2018/10/8.
*/
public class BatchDemoCross {
public static void main(String[] args) throws Exception{
//获取运行环境
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
//tuple2<用户id,用户姓名>
ArrayList<String> data1 = new ArrayList<>();
data1.add("zs");
data1.add("ww");
//tuple2<用户id,用户所在城市>
ArrayList<Integer> data2 = new ArrayList<>();
data2.add(1);
data2.add(2);
DataSource<String> text1 = env.fromCollection(data1);
DataSource<Integer> text2 = env.fromCollection(data2);
CrossOperator.DefaultCross<String, Integer> cross = text1.cross(text2);
cross.print();
}
}
4、registerCachedFile(Distributed Cache)
package xuwei.tech.batch.batchAPI;
import org.apache.commons.io.FileUtils;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.functions.RichMapFunction;
import org.apache.flink.api.java.DataSet;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.operators.DataSource;
import org.apache.flink.api.java.operators.MapOperator;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.configuration.Configuration;
import java.io.File;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
/**
* Distributed Cache
*/
public class BatchDemoDisCache {
public static void main(String[] args) throws Exception{
//获取运行环境
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
//1:注册一个文件,可以使用hdfs或者s3上的文件
env.registerCachedFile("d:\data\file\a.txt","a.txt");
DataSource<String> data = env.fromElements("a", "b", "c", "d");
DataSet<String> result = data.map(new RichMapFunction<String, String>() {
private ArrayList<String> dataList = new ArrayList<String>();
@Override
public void open(Configuration parameters) throws Exception {
super.open(parameters);
//2:使用文件
File myFile = getRuntimeContext().getDistributedCache().getFile("a.txt");
List<String> lines = FileUtils.readLines(myFile);
for (String line : lines) {
this.dataList.add(line);
System.out.println("line:" + line);
}
}
@Override
public String map(String value) throws Exception {
//在这里就可以使用dataList
return value;
}
});
result.print();
}
}
5、distinct
package xuwei.tech.batch.batchAPI;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.functions.MapPartitionFunction;
import org.apache.flink.api.java.DataSet;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.operators.DataSource;
import org.apache.flink.api.java.operators.FlatMapOperator;
import org.apache.flink.util.Collector;
import java.util.ArrayList;
import java.util.Iterator;
public class BatchDemoDistinct {
public static void main(String[] args) throws Exception{
//获取运行环境
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
ArrayList<String> data = new ArrayList<>();
data.add("hello you");
data.add("hello me");
DataSource<String> text = env.fromCollection(data);
FlatMapOperator<String, String> flatMapData = text.flatMap(new FlatMapFunction<String, String>() {
@Override
public void flatMap(String value, Collector<String> out) throws Exception {
String[] split = value.toLowerCase().split("\W+");
for (String word : split) {
System.out.println("单词:"+word);
out.collect(word);
}
}
});
flatMapData.distinct()// 对数据进行整体去重
.print();
}
}
6、排序(first)
package xuwei.tech.batch.batchAPI;
import org.apache.flink.api.common.functions.JoinFunction;
import org.apache.flink.api.common.operators.Order;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.operators.DataSource;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple3;
import java.util.ArrayList;
/**
* 获取集合中的前N个元素
* Created by xuwei.tech on 2018/10/8.
*/
public class BatchDemoFirstN {
public static void main(String[] args) throws Exception{
//获取运行环境
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
ArrayList<Tuple2<Integer, String>> data = new ArrayList<>();
data.add(new Tuple2<>(2,"zs"));
data.add(new Tuple2<>(4,"ls"));
data.add(new Tuple2<>(3,"ww"));
data.add(new Tuple2<>(1,"xw"));
data.add(new Tuple2<>(1,"aw"));
data.add(new Tuple2<>(1,"mw"));
DataSource<Tuple2<Integer, String>> text = env.fromCollection(data);
//获取前3条数据,按照数据插入的顺序
text.first(3).print();
System.out.println("==============================");
//根据数据中的第一列进行分组,获取每组的前2个元素
text.groupBy(0).first(2).print();
System.out.println("==============================");
//根据数据中的第一列分组,再根据第二列进行组内排序[升序],获取每组的前2个元素
text.groupBy(0).sortGroup(1, Order.ASCENDING).first(2).print();
System.out.println("==============================");
//不分组,全局排序获取集合中的前3个元素,针对第一个元素升序,第二个元素倒序
text.sortPartition(0,Order.ASCENDING).sortPartition(1,Order.DESCENDING).first(3).print();
}
}
7、join
package xuwei.tech.batch.batchAPI;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.JoinFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.operators.DataSource;
import org.apache.flink.api.java.operators.FlatMapOperator;
import org.apache.flink.api.java.tuple.Tuple1;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.util.Collector;
import java.util.ArrayList;
public class BatchDemoJoin {
public static void main(String[] args) throws Exception{
//获取运行环境
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
//tuple2<用户id,用户姓名>
ArrayList<Tuple2<Integer, String>> data1 = new ArrayList<>();
data1.add(new Tuple2<>(1,"zs"));
data1.add(new Tuple2<>(2,"ls"));
data1.add(new Tuple2<>(3,"ww"));
//tuple2<用户id,用户所在城市>
ArrayList<Tuple2<Integer, String>> data2 = new ArrayList<>();
data2.add(new Tuple2<>(1,"beijing"));
data2.add(new Tuple2<>(2,"shanghai"));
data2.add(new Tuple2<>(3,"guangzhou"));
DataSource<Tuple2<Integer, String>> text1 = env.fromCollection(data1);
DataSource<Tuple2<Integer, String>> text2 = env.fromCollection(data2);
text1.join(text2).where(0)//指定第一个数据集中需要进行比较的元素角标
.equalTo(0)//指定第二个数据集中需要进行比较的元素角标
.with(new JoinFunction<Tuple2<Integer,String>, Tuple2<Integer,String>, Tuple3<Integer,String,String>>() {
@Override
public Tuple3<Integer, String, String> join(Tuple2<Integer, String> first, Tuple2<Integer, String> second)
throws Exception {
return new Tuple3<>(first.f0,first.f1,second.f1);
}
}).print();
System.out.println("==================================");
//注意,这里用map和上面使用的with最终效果是一致的。
/*text1.join(text2).where(0)//指定第一个数据集中需要进行比较的元素角标
.equalTo(0)//指定第二个数据集中需要进行比较的元素角标
.map(new MapFunction<Tuple2<Tuple2<Integer,String>,Tuple2<Integer,String>>, Tuple3<Integer,String,String>>() {
@Override
public Tuple3<Integer, String, String> map(Tuple2<Tuple2<Integer, String>, Tuple2<Integer, String>> value) throws Exception {
return new Tuple3<>(value.f0.f0,value.f0.f1,value.f1.f1);
}
}).print();*/
}
}
8、outerJoin
package xuwei.tech.batch.batchAPI;
import org.apache.flink.api.common.functions.JoinFunction;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.operators.DataSource;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple3;
import java.util.ArrayList;
/**
* 外连接
*
* 左外连接
* 右外连接
* 全外连接
*/
public class BatchDemoOuterJoin {
public static void main(String[] args) throws Exception{
//获取运行环境
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
//tuple2<用户id,用户姓名>
ArrayList<Tuple2<Integer, String>> data1 = new ArrayList<>();
data1.add(new Tuple2<>(1,"zs"));
data1.add(new Tuple2<>(2,"ls"));
data1.add(new Tuple2<>(3,"ww"));
//tuple2<用户id,用户所在城市>
ArrayList<Tuple2<Integer, String>> data2 = new ArrayList<>();
data2.add(new Tuple2<>(1,"beijing"));
data2.add(new Tuple2<>(2,"shanghai"));
data2.add(new Tuple2<>(4,"guangzhou"));
DataSource<Tuple2<Integer, String>> text1 = env.fromCollection(data1);
DataSource<Tuple2<Integer, String>> text2 = env.fromCollection(data2);
/**
* 左外连接
*
* 注意:second这个tuple中的元素可能为null
*
*/
text1.leftOuterJoin(text2)
.where(0)
.equalTo(0)
.with(new JoinFunction<Tuple2<Integer,String>, Tuple2<Integer,String>, Tuple3<Integer,String,String>>() {
@Override
public Tuple3<Integer, String, String> join(Tuple2<Integer, String> first, Tuple2<Integer, String> second) throws Exception {
if(second==null){
return new Tuple3<>(first.f0,first.f1,"null");
}else{
return new Tuple3<>(first.f0,first.f1,second.f1);
}
}
}).print();
System.out.println("=============================================================================");
/**
* 右外连接
*
* 注意:first这个tuple中的数据可能为null
*
*/
text1.rightOuterJoin(text2)
.where(0)
.equalTo(0)
.with(new JoinFunction<Tuple2<Integer,String>, Tuple2<Integer,String>, Tuple3<Integer,String,String>>() {
@Override
public Tuple3<Integer, String, String> join(Tuple2<Integer, String> first, Tuple2<Integer, String> second) throws Exception {
if(first==null){
return new Tuple3<>(second.f0,"null",second.f1);
}
return new Tuple3<>(first.f0,first.f1,second.f1);
}
}).print();
System.out.println("=============================================================================");
/**
* 全外连接
*
* 注意:first和second这两个tuple都有可能为null
*
*/
text1.fullOuterJoin(text2)
.where(0)
.equalTo(0)
.with(new JoinFunction<Tuple2<Integer,String>, Tuple2<Integer,String>, Tuple3<Integer,String,String>>() {
@Override
public Tuple3<Integer, String, String> join(Tuple2<Integer, String> first, Tuple2<Integer, String> second) throws Exception {
if(first==null){
return new Tuple3<>(second.f0,"null",second.f1);
}else if(second == null){
return new Tuple3<>(first.f0,first.f1,"null");
}else{
return new Tuple3<>(first.f0,first.f1,second.f1);
}
}
}).print();
}
}
9、union
package xuwei.tech.batch.batchAPI;
import org.apache.flink.api.common.functions.JoinFunction;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.operators.DataSource;
import org.apache.flink.api.java.operators.UnionOperator;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple3;
import java.util.ArrayList;
/**
* Created by xuwei.tech on 2018/10/8.
*/
public class BatchDemoUnion {
public static void main(String[] args) throws Exception{
//获取运行环境
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
ArrayList<Tuple2<Integer, String>> data1 = new ArrayList<>();
data1.add(new Tuple2<>(1,"zs"));
data1.add(new Tuple2<>(2,"ls"));
data1.add(new Tuple2<>(3,"ww"));
ArrayList<Tuple2<Integer, String>> data2 = new ArrayList<>();
data2.add(new Tuple2<>(1,"lili"));
data2.add(new Tuple2<>(2,"jack"));
data2.add(new Tuple2<>(3,"jessic"));
DataSource<Tuple2<Integer, String>> text1 = env.fromCollection(data1);
DataSource<Tuple2<Integer, String>> text2 = env.fromCollection(data2);
UnionOperator<Tuple2<Integer, String>> union = text1.union(text2);
union.print();
}
}
三、DataStream API之partition
介绍:
- Rebalance:对数据集进行再平衡,重分区,消除数据倾斜
- Hash-Partition:根据指定key的哈希值对数据集进行分区
- partitionByHash()
- Range-Partition:根据指定的key对数据集进行范围分区
- .partitionByRange()
- Custom Partitioning:自定义分区规则
- 自定义分区需要实现Partitioner接口
- partitionCustom(partitioner, "someKey")
- 或者partitionCustom(partitioner, 0)
代码实现:
1、partitionByRange或partitionByHash
package xuwei.tech.batch.batchAPI;
import org.apache.flink.api.common.functions.MapPartitionFunction;
import org.apache.flink.api.common.operators.Order;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.operators.DataSource;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.util.Collector;
import java.util.ArrayList;
import java.util.Iterator;
/**
* Hash-Partition
*
* Range-Partition
*
*
* Created by xuwei.tech on 2018/10/8.
*/
public class BatchDemoHashRangePartition {
public static void main(String[] args) throws Exception{
//获取运行环境
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
ArrayList<Tuple2<Integer, String>> data = new ArrayList<>();
data.add(new Tuple2<>(1,"hello1"));
data.add(new Tuple2<>(2,"hello2"));
data.add(new Tuple2<>(2,"hello3"));
data.add(new Tuple2<>(3,"hello4"));
data.add(new Tuple2<>(3,"hello5"));
data.add(new Tuple2<>(3,"hello6"));
data.add(new Tuple2<>(4,"hello7"));
data.add(new Tuple2<>(4,"hello8"));
data.add(new Tuple2<>(4,"hello9"));
data.add(new Tuple2<>(4,"hello10"));
data.add(new Tuple2<>(5,"hello11"));
data.add(new Tuple2<>(5,"hello12"));
data.add(new Tuple2<>(5,"hello13"));
data.add(new Tuple2<>(5,"hello14"));
data.add(new Tuple2<>(5,"hello15"));
data.add(new Tuple2<>(6,"hello16"));
data.add(new Tuple2<>(6,"hello17"));
data.add(new Tuple2<>(6,"hello18"));
data.add(new Tuple2<>(6,"hello19"));
data.add(new Tuple2<>(6,"hello20"));
data.add(new Tuple2<>(6,"hello21"));
DataSource<Tuple2<Integer, String>> text = env.fromCollection(data);
/*text.partitionByHash(0).mapPartition(new MapPartitionFunction<Tuple2<Integer,String>, Tuple2<Integer,String>>() {
@Override
public void mapPartition(Iterable<Tuple2<Integer, String>> values, Collector<Tuple2<Integer, String>> out) throws Exception {
Iterator<Tuple2<Integer, String>> it = values.iterator();
while (it.hasNext()){
Tuple2<Integer, String> next = it.next();
System.out.println("当前线程id:"+Thread.currentThread().getId()+","+next);
}
}
}).print();*/
text.partitionByRange(0).mapPartition(new MapPartitionFunction<Tuple2<Integer,String>, Tuple2<Integer,String>>() {
@Override
public void mapPartition(Iterable<Tuple2<Integer, String>> values, Collector<Tuple2<Integer, String>> out) throws Exception {
Iterator<Tuple2<Integer, String>> it = values.iterator();
while (it.hasNext()){
Tuple2<Integer, String> next = it.next();
System.out.println("当前线程id:"+Thread.currentThread().getId()+","+next);
}
}
}).print();
}
}
2、mapPartition
package xuwei.tech.batch.batchAPI;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.functions.MapPartitionFunction;
import org.apache.flink.api.java.DataSet;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.operators.DataSource;
import org.apache.flink.api.java.operators.MapPartitionOperator;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.util.Collector;
import java.util.ArrayList;
import java.util.Iterator;
/**
* Created by xuwei.tech on 2018/10/8.
*/
public class BatchDemoMapPartition {
public static void main(String[] args) throws Exception{
//获取运行环境
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
ArrayList<String> data = new ArrayList<>();
data.add("hello you");
data.add("hello me");
DataSource<String> text = env.fromCollection(data);
/*text.map(new MapFunction<String, String>() {
@Override
public String map(String value) throws Exception {
//获取数据库连接--注意,此时是每过来一条数据就获取一次链接
//处理数据
//关闭连接
return value;
}
});*/
DataSet<String> mapPartitionData = text.mapPartition(new MapPartitionFunction<String, String>() {
@Override
public void mapPartition(Iterable<String> values, Collector<String> out) throws Exception {
//获取数据库连接--注意,此时是一个分区的数据获取一次连接【优点,每个分区获取一次链接】
//values中保存了一个分区的数据
//处理数据
Iterator<String> it = values.iterator();
while (it.hasNext()) {
String next = it.next();
String[] split = next.split("\W+");
for (String word : split) {
out.collect(word);
}
}
//关闭链接
}
});
mapPartitionData.print();
}
}
四、DataSet API之Data Sink(数据落地)
介绍:
- writeAsText():将元素以字符串形式逐行写入,这些字符串通过调用每个元素的toString()方法来获取
- writeAsCsv():将元组以逗号分隔写入文件中,行及字段之间的分隔是可配置的。每个字段的值来自对象的toString()方法
- print():打印每个元素的toString()方法的值到标准输出或者标准错误输出流中
代码:
1、writeAsCsv
package xuwei.tech.batch;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.DataSet;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.operators.DataSource;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.util.Collector;
/**
* Created by xuwei.tech on 2018/10/8.
*/
public class BatchWordCountJava {
public static void main(String[] args) throws Exception{
String inputPath = "D:\data\file";
String outPath = "D:\data\result";
//获取运行环境
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
//获取文件中的内容
DataSource<String> text = env.readTextFile(inputPath);
DataSet<Tuple2<String, Integer>> counts = text.flatMap(new Tokenizer()).groupBy(0).sum(1);
counts.writeAsCsv(outPath,"
"," ").setParallelism(1);
env.execute("batch word count");
}
public static class Tokenizer implements FlatMapFunction<String,Tuple2<String,Integer>>{
public void flatMap(String value, Collector<Tuple2<String, Integer>> out) throws Exception {
String[] tokens = value.toLowerCase().split("\W+");
for (String token: tokens) {
if(token.length()>0){
out.collect(new Tuple2<String, Integer>(token,1));
}
}
}
}
}