zoukankan      html  css  js  c++  java
  • sklearn学习--超参的搜索

    我们上面已经初步得出模型,并且效果看起来还不错,所以我们现在应该下想办法进一步优化这一个模型了。

    我们在调参的时候需要将数据集分为三部分,分别是:训练集、验证集以及测试集。训练集用于模型的训练,然后我们根据验证集的结果去调整出泛化能力较强的模型,最后通过测试集得出模型的泛化能力。如果只把数据分为训练集和测试集,也许你能调出对于测试集最合适的参数,但模型的泛化能力也许并没有在测试集上表现的那么强。

    由于鸢尾属植物的数据集并不大,如果将数据分为三部分的话,训练数据就太少了,可能提高不了模型的性能。在此只是简单的介绍sklearn中的调参方法。

    model_seletion里面还提供自动调参的函数,以格搜索(GridSearchCV)为例。

    from sklearn.model_selection import GridSearchCV
    clf = LogisticRegression()
    gs = GridSearchCV(clf, parameters)
    gs.fit(data, label)
    gs.best_params_ 

    通过传入字典,对比使用不同的参数的估计器的效果,得出最优的参数。这里是对逻辑回归的精度进行调整。另外我们还可以使用不同的指标来选择参数,不同的指标在sklearn.metrics

    转自https://zhuanlan.zhihu.com/p/33420189

  • 相关阅读:
    触发器
    数据库function和procedure
    java连接数据库
    单例模式
    python入门相关笔记
    ubuntu 系统备份到移动硬盘(tar) 还原到另一台电脑
    大白菜pe 通用pe 安装心得
    18 java 代理模式 (转)
    5 HBase 常用Shell命令
    1、shell 简介
  • 原文地址:https://www.cnblogs.com/huangmouren233/p/14912541.html
Copyright © 2011-2022 走看看