zoukankan      html  css  js  c++  java
  • 一篇文章彻底搞懂snowflake算法及百度美团的最佳实践

    写在前面的话

    一提到分布式ID自动生成方案,大家肯定都非常熟悉,并且立即能说出自家拿手的几种方案,确实,ID作为系统数据的重要标识,重要性不言而喻,而各种方案也是历经多代优化,请允许我用这个视角对分布式ID自动生成方案进行分类:

    实现方式

    • 完全依赖数据源方式

    ID的生成规则,读取控制完全由数据源控制,常见的如数据库的自增长ID,序列号等,或Redis的INCR/INCRBY原子操作产生顺序号等。

    • 半依赖数据源方式

    ID的生成规则,有部分生成因子需要由数据源(或配置信息)控制,如snowflake算法。

    • 不依赖数据源方式

    ID的生成规则完全由机器信息独立计算,不依赖任何配置信息和数据记录,如常见的UUID,GUID等

    实践方案

    实践方案适用于以上提及的三种实现方式,可作为这三种实现方式的一种补充,旨在提升系统吞吐量,但原有实现方式的局限性依然存在。

    • 实时获取方案

    顾名思义,每次要获取ID时,实时生成。
    简单快捷,ID都是连续不间断的,但吞吐量可能不是最高。

    • 预生成方案

    预先生成一批ID放在数据池里,可简单自增长生成,也可以设置步长,分批生成,需要将这些预先生成的数据,放在存储容器里(JVM内存,Redis,数据库表均可)。
    可以较大幅度地提升吞吐量,但需要开辟临时存储空间,断电宕机后可能会丢失已有ID,ID可能有间断。

    方案简介

    以下对目前流行的分布式ID方案做简单介绍

    1. 数据库自增长ID

    属于完全依赖数据源的方式,所有的ID存储在数据库里,是最常用的ID生成办法,在单体应用时期得到了最广泛的使用,建立数据表时利用数据库自带的auto_increment作主键,或是使用序列完成其他场景的一些自增长ID的需求。

    • 优点:非常简单,有序递增,方便分页和排序。
    • 缺点:分库分表后,同一数据表的自增ID容易重复,无法直接使用(可以设置步长,但局限性很明显);性能吞吐量整个较低,如果设计一个单独的数据库来实现 分布式应用的数据唯一性,即使使用预生成方案,也会因为事务锁的问题,高并发场景容易出现单点瓶颈。
    • 适用场景:单数据库实例的表ID(包含主从同步场景),部分按天计数的流水号等;分库分表场景、全系统唯一性ID场景不适用。
    1. Redis生成ID

    也属于完全依赖数据源的方式,通过Redis的INCR/INCRBY自增原子操作命令,能保证生成的ID肯定是唯一有序的,本质上实现方式与数据库一致。

    • 优点:整体吞吐量比数据库要高。
    • 缺点:Redis实例或集群宕机后,找回最新的ID值有点困难。
    • 适用场景:比较适合计数场景,如用户访问量,订单流水号(日期+流水号)等。
    1. UUID、GUID生成ID

    UUID:按照OSF制定的标准计算,用到了以太网卡地址、纳秒级时间、芯片ID码和许多可能的数字。由以下几部分的组合:当前日期和时间(UUID的第一个部分与时间有关,如果你在生成一个UUID之后,过几秒又生成一个UUID,则第一个部分不同,其余相同),时钟序列,全局唯一的IEEE机器识别号(如果有网卡,从网卡获得,没有网卡以其他方式获得)

    GUID:微软对UUID这个标准的实现。UUID还有其它各种实现,不止GUID一种,不一一列举了。

    这两种属于不依赖数据源方式,真正的全球唯一性ID

    • 优点:不依赖任何数据源,自行计算,没有网络ID,速度超快,并且全球唯一。
    • 缺点:没有顺序性,并且比较长(128bit),作为数据库主键、索引会导致索引效率下降,空间占用较多。
    • 适用场景:只要对存储空间没有苛刻要求的都能够适用,比如各种链路追踪、日志存储等。

    4、snowflake算法(雪花算法)生成ID

    属于半依赖数据源方式,原理是使用Long类型(64位),按照一定的规则进行填充:时间(毫秒级)+集群ID+机器ID+序列号,每部分占用的位数可以根据实际需要分配,其中集群ID和机器ID这两部分,在实际应用场景中要依赖外部参数配置或数据库记录。

    • 优点:高性能、低延迟、去中心化、按时间有序
    • 缺点:要求机器时钟同步(到秒级即可)
    • 适用场景:分布式应用环境的数据主键

    雪花ID算法听起来是不是特别适用分布式架构场景?照目前来看是的,接下来我们重点讲解它的原理和最佳实践。

    snowflake算法实现原理

    snowflake算法来源于Twitter,使用scala语言实现,利用Thrift框架实现RPC接口调用,最初的项目起因是数据库从mysql迁移到Cassandra,Cassandra没有现成可用 的ID生成机制,就催生了这个项目,现有的github源码有兴趣可以去看看。

    snowflake算法的特性是有序、唯一,并且要求高性能,低延迟(每台机器每秒至少生成10k条数据,并且响应时间在2ms以内),要在分布式环境(多集群,跨机房)下使用,因此snowflake算法得到的ID是分段组成的:

    • 与指定日期的时间差(毫秒级),41位,够用69年
    • 集群ID + 机器ID, 10位,最多支持1024台机器
    • 序列,12位,每台机器每毫秒内最多产生4096个序列号

    如图所示:
    snowflake结构

    • 1bit:符号位,固定是0,表示全部ID都是正整数
    • 41bit:毫秒数时间差,从指定的日期算起,够用69年,我们知道用Long类型表示的时间戳是从1970-01-01 00:00:00开始算起的,咱们这里的时间戳可以指定日期,如2019-10-23 00:00:00
    • 10bit:机器ID,有异地部署,多集群的也可以配置,需要线下规划好各地机房,各集群,各实例ID的编号
    • 12bit:序列ID,前面都相同的话,最多可以支持到4096个

    以上的位数分配只是官方建议的,我们可以根据实际需要自行分配,比如说我们的应用机器数量最多也就几十台,但并发数很大,我们就可以将10bit减少到8bit,序列部分从12bit增加到14bit等等

    当然每部分的含义也可以自由替换,如中间部分的机器ID,如果是云计算、容器化的部署环境,随时有扩容,缩减机器的操作,通过线下规划去配置实例的ID不太现实,就可以替换为实例每重启一次,拿一次自增长的ID作为该部分的内容,下文会讲解。

    github上也有大神用Java做了snowflake最基本的实现,这里直接查看源码:
    snowflake java版源码

    /**
     * twitter的snowflake算法 -- java实现
     * 
     * @author beyond
     * @date 2016/11/26
     */
    public class SnowFlake {
    
        /**
         * 起始的时间戳
         */
        private final static long START_STMP = 1480166465631L;
    
        /**
         * 每一部分占用的位数
         */
        private final static long SEQUENCE_BIT = 12; //序列号占用的位数
        private final static long MACHINE_BIT = 5;   //机器标识占用的位数
        private final static long DATACENTER_BIT = 5;//数据中心占用的位数
    
        /**
         * 每一部分的最大值
         */
        private final static long MAX_DATACENTER_NUM = -1L ^ (-1L << DATACENTER_BIT);
        private final static long MAX_MACHINE_NUM = -1L ^ (-1L << MACHINE_BIT);
        private final static long MAX_SEQUENCE = -1L ^ (-1L << SEQUENCE_BIT);
    
        /**
         * 每一部分向左的位移
         */
        private final static long MACHINE_LEFT = SEQUENCE_BIT;
        private final static long DATACENTER_LEFT = SEQUENCE_BIT + MACHINE_BIT;
        private final static long TIMESTMP_LEFT = DATACENTER_LEFT + DATACENTER_BIT;
    
        private long datacenterId;  //数据中心
        private long machineId;     //机器标识
        private long sequence = 0L; //序列号
        private long lastStmp = -1L;//上一次时间戳
    
        public SnowFlake(long datacenterId, long machineId) {
            if (datacenterId > MAX_DATACENTER_NUM || datacenterId < 0) {
                throw new IllegalArgumentException("datacenterId can't be greater than MAX_DATACENTER_NUM or less than 0");
            }
            if (machineId > MAX_MACHINE_NUM || machineId < 0) {
                throw new IllegalArgumentException("machineId can't be greater than MAX_MACHINE_NUM or less than 0");
            }
            this.datacenterId = datacenterId;
            this.machineId = machineId;
        }
    
        /**
         * 产生下一个ID
         *
         * @return
         */
        public synchronized long nextId() {
            long currStmp = getNewstmp();
            if (currStmp < lastStmp) {
                throw new RuntimeException("Clock moved backwards.  Refusing to generate id");
            }
    
            if (currStmp == lastStmp) {
                //相同毫秒内,序列号自增
                sequence = (sequence + 1) & MAX_SEQUENCE;
                //同一毫秒的序列数已经达到最大
                if (sequence == 0L) {
                    currStmp = getNextMill();
                }
            } else {
                //不同毫秒内,序列号置为0
                sequence = 0L;
            }
    
            lastStmp = currStmp;
    
            return (currStmp - START_STMP) << TIMESTMP_LEFT //时间戳部分
                    | datacenterId << DATACENTER_LEFT       //数据中心部分
                    | machineId << MACHINE_LEFT             //机器标识部分
                    | sequence;                             //序列号部分
        }
    
        private long getNextMill() {
            long mill = getNewstmp();
            while (mill <= lastStmp) {
                mill = getNewstmp();
            }
            return mill;
        }
    
        private long getNewstmp() {
            return System.currentTimeMillis();
        }
    
        public static void main(String[] args) {
            SnowFlake snowFlake = new SnowFlake(2, 3);
    
            for (int i = 0; i < (1 << 12); i++) {
                System.out.println(snowFlake.nextId());
            }
    
        }
    }
    

    基本上通过位移操作,将每段含义的数值,移到相应的位置上,如机器ID这里由数据中心+机器标识组成,所以,机器标识向左移12位,就是它的位置,数据中心的编号向左移17位,时间戳的值向左移22位,每部分占据自己的位置,各不干涉,由此组成一个完整的ID值。

    这里就是snowflake最基础的实现原理,如果有些java基础知识不记得了建议查一下资料,如二进制-1的表示是0xffff(里面全是1),<<表示左移操作,-1<<5等于-32,异或操作-1 ^ (-1 << 5)为31等等。

    了解snowflake的基本实现原理,可以通过提前规划好机器标识来实现,但目前的分布式生产环境,借用了多种云计算、容器化技术,实例的个数随时有变化,还需要处理服务器实例时钟回拨的问题,固定规划ID然后通过配置来使用snowflake的场景可行性不高,一般是自动启停,增减机器,这样就需要对snowflake进行一些改造才能更好地应用到生产环境中。

    百度uid-generator项目

    UidGenerator项目基于snowflake原理实现,只是修改了机器ID部分的定义(实例重启的次数),并且64位bit的分配支持配置,官方提供的默认分配方式如下图:

    百度实现的默认snowflake结构

    Snowflake算法描述:指定机器 & 同一时刻 & 某一并发序列,是唯一的。据此可生成一个64 bits的唯一ID(long)。

    • sign(1bit) 固定1bit符号标识,即生成的UID为正数。
    • delta seconds (28 bits)
      当前时间,相对于时间基点"2016-05-20"的增量值,单位:秒,最多可支持约8.7年
    • worker id (22 bits) 机器id,最多可支持约420w次机器启动。内置实现为在启动时由数据库分配,默认分配策略为用后即弃,后续可提供复用策略。
    • sequence (13 bits) 每秒下的并发序列,13 bits可支持每秒8192个并发。

    具体的实现有两种,一种是实时生成ID,另一种是预先生成ID方式

    1. DefaultUidGenerator
    • 启动时向数据库WORKER_NODE表插入当前实例的IP,Port等信息,再获取该数据的自增长ID作为机器ID部分。
      简易流程图如下:

    UidGenerator启动过程

    • 提供获取ID的方法,并且检测是否有时钟回拨,有回拨现象直接抛出异常,当前版本不支持时钟顺拨后漂移操作。简易流程图如下:

    UidGenerator生成过程

    核心代码如下:

        /**
         * Get UID
         *
         * @return UID
         * @throws UidGenerateException in the case: Clock moved backwards; Exceeds the max timestamp
         */
        protected synchronized long nextId() {
            long currentSecond = getCurrentSecond();
    
            // Clock moved backwards, refuse to generate uid
            if (currentSecond < lastSecond) {
                long refusedSeconds = lastSecond - currentSecond;
                throw new UidGenerateException("Clock moved backwards. Refusing for %d seconds", refusedSeconds);
            }
    
            // At the same second, increase sequence
            if (currentSecond == lastSecond) {
                sequence = (sequence + 1) & bitsAllocator.getMaxSequence();
                // Exceed the max sequence, we wait the next second to generate uid
                if (sequence == 0) {
                    currentSecond = getNextSecond(lastSecond);
                }
    
            // At the different second, sequence restart from zero
            } else {
                sequence = 0L;
            }
    
            lastSecond = currentSecond;
    
            // Allocate bits for UID
            return bitsAllocator.allocate(currentSecond - epochSeconds, workerId, sequence);
        }
    
    1. CachedUidGenerator

    机器ID的获取方法与上一种相同,这种是预先生成一批ID,放在一个RingBuffer环形数组里,供客户端使用,当可用数据低于阀值时,再次调用批量生成方法,属于用空间换时间的做法,可以提高整个ID的吞吐量。

    • 与DefaultUidGenerator相比较,初始化时多了填充RingBuffer环形数组的逻辑,简单流程图如下:

    CachedUidGenerator启动过程

    核心代码:

    /**
         * Initialize RingBuffer & RingBufferPaddingExecutor
         */
        private void initRingBuffer() {
            // initialize RingBuffer
            int bufferSize = ((int) bitsAllocator.getMaxSequence() + 1) << boostPower;
            this.ringBuffer = new RingBuffer(bufferSize, paddingFactor);
            LOGGER.info("Initialized ring buffer size:{}, paddingFactor:{}", bufferSize, paddingFactor);
    
            // initialize RingBufferPaddingExecutor
            boolean usingSchedule = (scheduleInterval != null);
            this.bufferPaddingExecutor = new BufferPaddingExecutor(ringBuffer, this::nextIdsForOneSecond, usingSchedule);
            if (usingSchedule) {
                bufferPaddingExecutor.setScheduleInterval(scheduleInterval);
            }
            
            LOGGER.info("Initialized BufferPaddingExecutor. Using schdule:{}, interval:{}", usingSchedule, scheduleInterval);
            
            // set rejected put/take handle policy
            this.ringBuffer.setBufferPaddingExecutor(bufferPaddingExecutor);
            if (rejectedPutBufferHandler != null) {
                this.ringBuffer.setRejectedPutHandler(rejectedPutBufferHandler);
            }
            if (rejectedTakeBufferHandler != null) {
                this.ringBuffer.setRejectedTakeHandler(rejectedTakeBufferHandler);
            }
            
            // fill in all slots of the RingBuffer
            bufferPaddingExecutor.paddingBuffer();
            
            // start buffer padding threads
            bufferPaddingExecutor.start();
        }
    
    public synchronized boolean put(long uid) {
            long currentTail = tail.get();
            long currentCursor = cursor.get();
    
            // tail catches the cursor, means that you can't put any cause of RingBuffer is full
            long distance = currentTail - (currentCursor == START_POINT ? 0 : currentCursor);
            if (distance == bufferSize - 1) {
                rejectedPutHandler.rejectPutBuffer(this, uid);
                return false;
            }
    
            // 1. pre-check whether the flag is CAN_PUT_FLAG
            int nextTailIndex = calSlotIndex(currentTail + 1);
            if (flags[nextTailIndex].get() != CAN_PUT_FLAG) {
                rejectedPutHandler.rejectPutBuffer(this, uid);
                return false;
            }
    
            // 2. put UID in the next slot
            // 3. update next slot' flag to CAN_TAKE_FLAG
            // 4. publish tail with sequence increase by one
            slots[nextTailIndex] = uid;
            flags[nextTailIndex].set(CAN_TAKE_FLAG);
            tail.incrementAndGet();
    
            // The atomicity of operations above, guarantees by 'synchronized'. In another word,
            // the take operation can't consume the UID we just put, until the tail is published(tail.incrementAndGet())
            return true;
        }
    
    • ID获取逻辑,由于有RingBuffer这个缓冲数组存在,获取ID直接从RingBuffer取出即可,同时RingBuffer自身校验何时再触发重新批量生成即可,这里获取的ID值与DefaultUidGenerator的明显区别是,DefaultUidGenerator获取的ID,时间戳部分就是当前时间的,CachedUidGenerator里获取的是填充时的时间戳,并不是获取时的时间,不过关系不大,都是不重复的,一样用。简易流程图如下:

    CachedUidGenerator获取过程

    核心代码:

    public long take() {
            // spin get next available cursor
            long currentCursor = cursor.get();
            long nextCursor = cursor.updateAndGet(old -> old == tail.get() ? old : old + 1);
    
            // check for safety consideration, it never occurs
            Assert.isTrue(nextCursor >= currentCursor, "Curosr can't move back");
    
            // trigger padding in an async-mode if reach the threshold
            long currentTail = tail.get();
            if (currentTail - nextCursor < paddingThreshold) {
                LOGGER.info("Reach the padding threshold:{}. tail:{}, cursor:{}, rest:{}", paddingThreshold, currentTail,
                        nextCursor, currentTail - nextCursor);
                bufferPaddingExecutor.asyncPadding();
            }
    
            // cursor catch the tail, means that there is no more available UID to take
            if (nextCursor == currentCursor) {
                rejectedTakeHandler.rejectTakeBuffer(this);
            }
    
            // 1. check next slot flag is CAN_TAKE_FLAG
            int nextCursorIndex = calSlotIndex(nextCursor);
            Assert.isTrue(flags[nextCursorIndex].get() == CAN_TAKE_FLAG, "Curosr not in can take status");
    
            // 2. get UID from next slot
            // 3. set next slot flag as CAN_PUT_FLAG.
            long uid = slots[nextCursorIndex];
            flags[nextCursorIndex].set(CAN_PUT_FLAG);
    
            // Note that: Step 2,3 can not swap. If we set flag before get value of slot, the producer may overwrite the
            // slot with a new UID, and this may cause the consumer take the UID twice after walk a round the ring
            return uid;
        }
    

    另外有个细节可以了解一下,RingBuffer的数据都是使用数组来存储的,考虑CPU Cache的结构,tail和cursor变量如果直接用原生的AtomicLong类型,tail和cursor可能会缓存在同一个cacheLine中,多个线程读取该变量可能会引发CacheLine的RFO请求,反而影响性能,为了防止伪共享问题,特意填充了6个long类型的成员变量,加上long类型的value成员变量,刚好占满一个Cache Line(Java对象还有8byte的对象头),这个叫CacheLine补齐,有兴趣可以了解一下,源码如下:

    public class PaddedAtomicLong extends AtomicLong {
        private static final long serialVersionUID = -3415778863941386253L;
    
        /** Padded 6 long (48 bytes) */
        public volatile long p1, p2, p3, p4, p5, p6 = 7L;
    
        /**
         * Constructors from {@link AtomicLong}
         */
        public PaddedAtomicLong() {
            super();
        }
    
        public PaddedAtomicLong(long initialValue) {
            super(initialValue);
        }
    
        /**
         * To prevent GC optimizations for cleaning unused padded references
         */
        public long sumPaddingToPreventOptimization() {
            return p1 + p2 + p3 + p4 + p5 + p6;
        }
    
    }
    

    以上是百度uid-generator项目的主要描述,我们可以发现,snowflake算法在落地时有一些变化,主要体现在机器ID的获取上,尤其是分布式集群环境下面,实例自动伸缩,docker容器化的一些技术,使得静态配置项目ID,实例ID可行性不高,所以这些转换为按启动次数来标识。

    美团ecp-uid项目

    在uidGenerator方面,美团的项目源码直接集成百度的源码,略微将一些Lambda表达式换成原生的java语法,例如:

    // com.myzmds.ecp.core.uid.baidu.impl.CachedUidGenerator类的initRingBuffer()方法
    // 百度源码
    this.bufferPaddingExecutor = new BufferPaddingExecutor(ringBuffer, this::nextIdsForOneSecond, usingSchedule);
    
    // 美团源码
    this.bufferPaddingExecutor = new BufferPaddingExecutor(ringBuffer, new BufferedUidProvider() {
        @Override
        public List<Long> provide(long momentInSecond) {
            return nextIdsForOneSecond(momentInSecond);
        }
    }, usingSchedule);
    

    并且在机器ID生成方面,引入了Zookeeper,Redis这些组件,丰富了机器ID的生成和获取方式,实例编号可以存储起来反复使用,不再是数据库单调增长这一种了。

    结束语

    本篇简单介绍了snowflake算法的原理及落地过程中的改造,在此学习了优秀的开源代码,并挑出部分进行了简单的示例,美团的ecp-uid项目不但集成了百度现有的UidGenerator算法,原生的snowflake算法,还包含优秀的leaf segment算法,鉴于篇幅没有详尽描述。文章内有任何不正确或不详尽之处请留言指出,谢谢。

    专注Java高并发、分布式架构,更多技术干货分享与心得,请关注公众号:Java架构社区
    Java架构社区

  • 相关阅读:
    hiho_1139_二分+bfs搜索
    hiho_1138_island_travel
    google_apactest_round_A_problem_D
    hiho1122_二分图匈牙利算法
    hiho1123_好配对
    hiho1096_divided_product
    hiho1099_constellation
    hiho1093_spfa
    hiho1092_have lunch together
    【ipad神坑】ipad麦克风听不到声音怎么回事 微信QQ语音视频对方都听不到
  • 原文地址:https://www.cnblogs.com/huangying2124/p/11736031.html
Copyright © 2011-2022 走看看