题目:https://vjudge.net/problem/POJ-3259
While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..N, M (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.
As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .
To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.
Input
Line 1 of each farm: Three space-separated integers respectively: N, M, and W
Lines 2.. M+1 of each farm: Three space-separated numbers ( S, E, T) that describe, respectively: a bidirectional path between S and E that requires T seconds to traverse. Two fields might be connected by more than one path.
Lines M+2.. M+ W+1 of each farm: Three space-separated numbers ( S, E, T) that describe, respectively: A one way path from S to E that also moves the traveler back T seconds.
Output
Sample Input
2 3 3 1 1 2 2 1 3 4 2 3 1 3 1 3 3 2 1 1 2 3 2 3 4 3 1 8
Sample Output
NO YES
Hint
For farm 2, FJ could travel back in time by the cycle 1->2->3->1, arriving back at his starting location 1 second before he leaves. He could start from anywhere on the cycle to accomplish this.
// bell_man模板 #include<iostream> #include<cstdio> #include<cstring> #include<cmath> #include<queue> #include<set> #include<algorithm> #include<map> #define maxn 200005 using namespace std; const int maxv=500+5; const int maxe=6000+5; const int INF=0x3f3f3f3f; struct proc { int s,e,t; //起点 终点 边权 }edge[maxe]; int n,m,w,dis[maxv]; int cnt; void addEdge(int s,int e,int t) //建立图 { edge[cnt].s=s; edge[cnt].e=e; edge[cnt++].t=t; } int bell_man() { bool flag; //松弛 for(int i=1;i<=n;i++) { flag=false; for(int j=1;j<=cnt;j++) { if(dis[edge[j].e]>dis[edge[j].s]+edge[j].t) { dis[edge[j].e]=dis[edge[j].s]+edge[j].t; flag=true; } } if(!flag) break; } //寻找负环,判断条件是负环可以无限松弛。 for(int i=1;i<=cnt;i++) { if(dis[edge[i].e]>dis[edge[i].s]+edge[i].t) { return true; } } return false; } int main() { int s,e,v; int cas; scanf("%d",&cas); while(cas--) { memset(dis,INF,sizeof(dis)); cnt=1; scanf("%d %d %d",&n,&m,&w); for(int i=1;i<=m;i++) { scanf("%d %d %d",&s,&e,&v); addEdge(s,e,v); addEdge(e,s,v); } for(int i=1;i<=w;i++) { scanf("%d %d %d",&s,&e,&v); addEdge(s,e,0-v); } int ans=bell_man(); if(ans) printf("YES "); else printf("NO "); } return 0; } // SPFA优化模板 // //#include <iostream> //#include <cstdio> //#include <cstring> //#include <algorithm> //#include <queue> // //using namespace std; //const int maxn=500+5; //const int maxe=6000+5; //const int INF=0x7fffffff; // //struct proc //{ // int v,w; // int next; //}; // //proc edge[maxe]; //int dis[maxn],vis[maxn],f,n,m,w,head[maxe]; //int cnt[maxn]; // //int k; //void addEdge(int u,int v,int w) //{ // edge[k].v=v; // edge[k].w=w; // edge[k].next=head[u]; // head[u]=k++; //} // //bool spfa() //{ // for(int i=0;i<=n;i++) // { // dis[i]=INF; // } // memset(cnt,0,sizeof(cnt)); // memset(vis,0,sizeof(vis)); // queue<int> q; // vis[1]=1; // dis[1]=0; // cnt[1]=1; // q.push(1); // while(!q.empty()) // { // int cur=q.front(); // q.pop(); // vis[cur]=false; // for(int i=head[cur];i+1;i=edge[i].next) // { // int id=edge[i].v; // if(dis[cur]+edge[i].w<dis[id]) // { // dis[id]=dis[cur]+edge[i].w; // if(!vis[id]) // { // cnt[id]++; // if(cnt[cur]>=n) // return false; // vis[id]=true; // q.push(id); // } // } // } // } // return true; //} // //int main() //{ // while(~scanf("%d",&f)) // { // while(f--) // { // scanf("%d %d %d",&n,&m,&w); // k=0; // memset(head,-1,sizeof(head)); // int s,e,val; // for(int i=0;i<m;i++) // { // scanf("%d %d %d",&s,&e,&val); // addEdge(s,e,val); // addEdge(e,s,val); // } // for(int i=0;i<w;i++) // { // scanf("%d %d %d",&s,&e,&val); // addEdge(s,e,0-val); // } // if(spfa()) printf("NO "); // else printf("YES "); // } // } //}