示例文件:
100 99
100 98
100 56
100 78
20 100
30 100
20 50
30 50
30 60
20 80
需求:首先按第一个数字分组,组成按第二个数字排序。
解决方案:
首先,第一个数字相同的情况下,应该分到同一个reduce去处理,这就需要重写了Partitioner,
因为默认的HashPartitioner会根据key值的hash值进行分配reduce task,但这里我们的key类型是自定义的intPair,
所以需要特别处理一下,根据第一个值进行分配reduce task即可。
默认的排序是根据key值排序的,这不需要特别处理。
另外,如何实现分组呢?即第一个数字相同,则第二个数字就在reduce的value 迭代器里面,而且值是有序的。
默认的情况下,如果key相同,value自然会被汇总到一起,但现在我们使用的技巧就是让key值不同的情况下,
我们也让它们的value汇总到一起。
关键代码是下面:
job.setGroupingComparatorClass(FirstGroupingComparator.class);
这个函数设定了按什么进行分组,进一步查看源码:
conf.setOutputValueGroupingComparator(cls);
相关说明如下:
* <p>For key-value pairs (K1,V1) and (K2,V2), the values (V1, V2) are passed
* in a single call to the reduce function if K1 and K2 compare as equal.</p>
*
* <p>Since {@link #setOutputKeyComparatorClass(Class)} can be used to control
* how keys are sorted, this can be used in conjunction to simulate
* <i>secondary sort on values</i>.</p>
这些设定是作用在reduce的shuffle阶段的,这个时候把从map复制过来的数据进行merge sort,仅获取
分组的第一个值,然后value被聚合在一起。这个时候key中first相同的只保留了第一个,其他的被抛弃,
但我们已经把值放在value中,所以second不会丢失,实现了辅助排序。
结果:
------------------------------------------------
20 50
20 80
20 100
------------------------------------------------
30 50
30 60
30 100
------------------------------------------------
100 56
100 78
100 98
100 99
这个示例体现了hadoop里面最核心的一些东西,一个是writable,一个是RawComparator.
前者体现了hadoop进行序列化的方式,后者体现了hadoop排序的比较机制。
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.hadoop.examples; import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.RawComparator; import org.apache.hadoop.io.Text; import org.apache.hadoop.io.WritableComparable; import org.apache.hadoop.io.WritableComparator; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Partitioner; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.util.GenericOptionsParser; /** * This is an example Hadoop Map/Reduce application. * It reads the text input files that must contain two integers per a line. * The output is sorted by the first and second number and grouped on the * first number. * * To run: bin/hadoop jar build/hadoop-examples.jar secondarysort * <i>in-dir</i> <i>out-dir</i> */ public class SecondarySort { /** * Define a pair of integers that are writable. * They are serialized in a byte comparable format. */ public static class IntPair implements WritableComparable<IntPair> { private int first = 0; private int second = 0; /** * Set the left and right values. */ public void set(int left, int right) { first = left; second = right; } public int getFirst() { return first; } public int getSecond() { return second; } /** * Read the two integers. * Encoded as: MIN_VALUE -> 0, 0 -> -MIN_VALUE, MAX_VALUE-> -1 */ @Override public void readFields(DataInput in) throws IOException { first = in.readInt() + Integer.MIN_VALUE; second = in.readInt() + Integer.MIN_VALUE; } @Override public void write(DataOutput out) throws IOException { out.writeInt(first - Integer.MIN_VALUE); out.writeInt(second - Integer.MIN_VALUE); } @Override public int hashCode() { return first * 157 + second;// why multiply 157? } @Override public boolean equals(Object right) { if (right instanceof IntPair) { IntPair r = (IntPair) right; return r.first == first && r.second == second; } else { return false; } } /** A Comparator that compares serialized IntPair. */ public static class Comparator extends WritableComparator { public Comparator() { super(IntPair.class); } public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2) { return compareBytes(b1, s1, l1, b2, s2, l2); } } static { // register this comparator WritableComparator.define(IntPair.class, new Comparator()); } @Override public int compareTo(IntPair o) { if (first != o.first) { return first < o.first ? -1 : 1; } else if (second != o.second) { return second < o.second ? -1 : 1; } else { return 0; } } } /** * Partition based on the first part of the pair. */ public static class FirstPartitioner extends Partitioner<IntPair,IntWritable>{ @Override public int getPartition(IntPair key, IntWritable value, int numPartitions) { return Math.abs(key.getFirst() * 127) % numPartitions; } } /** * Compare only the first part of the pair, so that reduce is called once * for each value of the first part. */ public static class FirstGroupingComparator implements RawComparator<IntPair> { @Override public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2) { return WritableComparator.compareBytes(b1, s1, Integer.SIZE/8, b2, s2, Integer.SIZE/8); } @Override public int compare(IntPair o1, IntPair o2) { int l = o1.getFirst(); int r = o2.getFirst(); return l == r ? 0 : (l < r ? -1 : 1); } } /** * Read two integers from each line and generate a key, value pair * as ((left, right), right). */ public static class MapClass extends Mapper<LongWritable, Text, IntPair, IntWritable> { private final IntPair key = new IntPair(); private final IntWritable value = new IntWritable(); @Override public void map(LongWritable inKey, Text inValue, Context context) throws IOException, InterruptedException { StringTokenizer itr = new StringTokenizer(inValue.toString()); int left = 0; int right = 0; if (itr.hasMoreTokens()) { left = Integer.parseInt(itr.nextToken()); if (itr.hasMoreTokens()) { right = Integer.parseInt(itr.nextToken()); } key.set(left, right); value.set(right); context.write(key, value); } } } /** * A reducer class that just emits the sum of the input values. */ public static class Reduce extends Reducer<IntPair, IntWritable, Text, IntWritable> { private static final Text SEPARATOR = new Text("------------------------------------------------"); private final Text first = new Text(); @Override public void reduce(IntPair key, Iterable<IntWritable> values, Context context ) throws IOException, InterruptedException { context.write(SEPARATOR, null); first.set(Integer.toString(key.getFirst())); for(IntWritable value: values) { context.write(first, value); } } } public static void main(String[] args) throws Exception { args = "-Dio.sort.mb=10 hdfs://namenode:9000/user/hadoop/test/intpair.txt hdfs://namenode:9000/user/hadoop/secsortout".split(" "); Configuration conf = new Configuration(); String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs(); if (otherArgs.length != 2) { System.err.println("Usage: secondarysrot <in> <out>"); System.exit(2); } Job job = new Job(conf, "secondary sort"); job.setJarByClass(SecondarySort.class); job.setMapperClass(MapClass.class); job.setReducerClass(Reduce.class); // group and partition by the first int in the pair job.setPartitionerClass(FirstPartitioner.class); job.setGroupingComparatorClass(FirstGroupingComparator.class); // the map output is IntPair, IntWritable job.setMapOutputKeyClass(IntPair.class); job.setMapOutputValueClass(IntWritable.class); // the reduce output is Text, IntWritable job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); FileInputFormat.addInputPath(job, new Path(otherArgs[0])); FileOutputFormat.setOutputPath(job, new Path(otherArgs[1])); myUtils.myUtils.DeleteFolder(conf, otherArgs[1]); System.exit(job.waitForCompletion(true) ? 0 : 1); } }