zoukankan      html  css  js  c++  java
  • GYM100633J. Ceizenpok’s formula 扩展lucas模板

    J. Ceizenpok’s formula
    time limit per test
    2.0 s
    memory limit per test
    256 MB
    input
    standard input
    output
    standard output

    Dr. Ceizenp'ok from planet i1c5l became famous across the whole Universe thanks to his recent discovery — the Ceizenpok’s formula. This formula has only three arguments: n, k and m, and its value is a number of k-combinations of a set of n modulo m.

    While the whole Universe is trying to guess what the formula is useful for, we need to automate its calculation.

    Input

    Single line contains three integers n, k, m, separated with spaces (1 ≤ n ≤ 1018, 0 ≤ k ≤ n, 2 ≤ m ≤ 1 000 000).

    Output

    Write the formula value for given arguments n, k, m.

    Examples
    Input
    2 1 3
    Output
    2
    Input
    4 2 5
    Output
    1
     
     
     
    【题解】
    裸的扩展lucas + CRT,推荐博文http://blog.csdn.net/clove_unique/article/details/54571216
    因为特殊情况k = 0的时候,我以为是0,加了个特判,结果应该是1,不用特判。。。。。。。。。。卡了我半个晚上
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <cstdlib>
     5 #include <algorithm>
     6 #include <queue>
     7 #include <vector>
     8 #include <map>
     9 #include <string> 
    10 #include <cmath> 
    11 #include <sstream>
    12 #define min(a, b) ((a) < (b) ? (a) : (b))
    13 #define max(a, b) ((a) > (b) ? (a) : (b))
    14 #define abs(a) ((a) < 0 ? (-1 * (a)) : (a))
    15 template<class T>
    16 inline void swap(T &a, T &b)
    17 {
    18     T tmp = a;a = b;b = tmp;
    19 }
    20 inline void read(long long &x)
    21 {
    22     x = 0;char ch = getchar(), c = ch;
    23     while(ch < '0' || ch > '9') c = ch, ch = getchar();
    24     while(ch <= '9' && ch >= '0') x = x * 10 + ch - '0', ch = getchar();
    25     if(c == '-') x = -x;
    26 }
    27 const long long INF = 0x3f3f3f3f;
    28 
    29 long long pow(long long a, long long b, long long mod)
    30 {
    31     long long r = 1, base = a % mod;
    32     for(;b;b >>= 1)
    33     {
    34         if(b & 1) r *= base, r %= mod;
    35         base *= base, base %= mod;
    36     }
    37     return r; 
    38 }
    39 void exgcd(long long a, long long b, long long &x, long long &y)
    40 {
    41     if(!b)x = 1, y = 0;
    42     else exgcd(b, a%b, y, x), y -= (a / b) * x;
    43 }
    44 long long ni(long long x, long long mod)
    45 {
    46     long long inv, y; exgcd(x, mod, inv, y);
    47     inv = (inv % mod + mod) % mod;
    48     if(!inv) inv = mod;
    49     return inv; 
    50 }
    51 int tiaoshi;
    52 long long calc(long long n, long long p, long long pt)
    53 {
    54     if(n == 0) return 1;
    55     long long ans = 1;
    56     for(long long i = 1;i <= pt;++ i) if(i % p) ans *= i, ans %= pt;
    57     ans = pow(ans, n/pt, pt);
    58     for(long long i = 1;i <= n%pt;++ i) 
    59         if(i % p) 
    60             ans *= i, ans %= pt;
    61     return ans * calc(n/p, p, pt) % pt;
    62 }
    63 long long C(long long n, long long m, long long p, long long pt)
    64 {
    65     if(n < m || n < 0 || m < 0) return 0;
    66     long long cnt = 0;
    67     for(long long i = n;i;i /= p) cnt += i/p;
    68     for(long long i = m;i;i /= p) cnt -= i/p;
    69     for(long long i = n - m;i;i /= p) cnt -= i/p;
    70     return pow(p, cnt, pt) * calc(n, p, pt) % pt * ni(calc(m, p, pt), pt) % pt * ni(calc(n - m, p, pt), pt) % pt;
    71 } 
    72 long long exlucas(long long n, long long m, long long mod)
    73 {
    74     long long tmp2 = mod, ans = 0;
    75     for(long long i = 2;i <= mod;++ i)
    76         if(tmp2 % i == 0)
    77         {
    78             long long pt = 1;
    79             while(tmp2 % i == 0)  tmp2 /= i, pt *= i;
    80             long long tmp3 = C(n, m, i, pt);
    81             ans += tmp3 * (mod/pt) % mod * ni(mod/pt, pt) % mod;
    82             ans %= mod;
    83         }
    84     return ans;
    85 }
    86 long long n,m,p;
    87 int main()
    88 {
    89     read(n), read(m), read(p);
    90     printf("%lld", exlucas(n, m, p)); 
    91     return 0;
    92 }
    GYM100633J
  • 相关阅读:
    yarn的学习之1-架构
    HDFS的存储策略
    搭建简单的hadoop集群(译文)
    构建高可靠hadoop集群之5-服务级别授权
    构建高可靠hadoop集群之4-保全模式
    构建高可靠hadoop集群之4-权限指引
    构建高可靠hadoop集群之3- Quorum Journal Manager
    构建高可靠hadoop集群之0-hadoop用户向导
    构建高可靠hadoop集群之2-机栈
    构建高可靠hadoop集群之1-理解hdfs架构
  • 原文地址:https://www.cnblogs.com/huibixiaoxing/p/8406941.html
Copyright © 2011-2022 走看看