zoukankan      html  css  js  c++  java
  • Kubernetes集群部署Prometheus和Grafana

    Kubernetes集群部署Prometheus和Grafana

    一、环境规划

    K8S集群角色 Ip 主机名
    控制节点 192.168.40.180 k8s-master1
    工作节点 192.168.40.181 k8s-node1
    工作节点 192.168.40.182 k8s-node2

    实验环境规划:

    • 操作系统:centos7.6
    • 配置: 4Gib内存/4vCPU/100G硬盘
    • 网络:Vmware NAT模式
    • k8s版本:v1.20.6
    [root@k8s-master1 ~]# kubectl get node
    NAME          STATUS   ROLES                  AGE     VERSION
    k8s-master1   Ready    control-plane,master   2d23h   v1.20.6
    k8s-node1     Ready    worker                 2d23h   v1.20.6
    k8s-node2     Ready    worker                 2d23h   v1.20.6
    

    二、node-exporter安装和配置

    2.1、node-exporter介绍

    node-exporter可以采集机器(物理机、虚拟机、云主机等)的监控指标数据,能够采集到的指标包括CPU, 内存,磁盘,网络,文件数等信息。

    2.2、node-exporter安装

    # 创建监控namespace
    [root@k8s-master1 prometheus]# kubectl create ns monitor-sa
    namespace/monitor-sa created
    
    # 创建node-export.yaml
    [root@k8s-master1 prometheus]# cat node-export.yaml
    apiVersion: apps/v1
    kind: DaemonSet # 可以保证k8s集群的每个节点都运行完全一样的pod
    metadata:
      name: node-exporter
      namespace: monitor-sa
      labels:
        name: node-exporter
    spec:
      selector:
        matchLabels:
         name: node-exporter
      template:
        metadata:
          labels:
            name: node-exporter
        spec:
          hostPID: true
          hostIPC: true
          hostNetwork: true
          containers:
          - name: node-exporter
            image: prom/node-exporter:v0.16.0
            ports:
            - containerPort: 9100
            resources:
              requests:
                cpu: 0.15 # 这个容器运行至少需要0.15核cpu
            securityContext:
              privileged: true	# 开启特权模式
            args:
            - --path.procfs
            - /host/proc
            - --path.sysfs
            - /host/sys
            - --collector.filesystem.ignored-mount-points
            - '"^/(sys|proc|dev|host|etc)($|/)"'
            volumeMounts:
            - name: dev
              mountPath: /host/dev
            - name: proc
              mountPath: /host/proc
            - name: sys
              mountPath: /host/sys
            - name: rootfs
              mountPath: /rootfs
          tolerations:
          - key: "node-role.kubernetes.io/master"
            operator: "Exists"
            effect: "NoSchedule"
          volumes:
            - name: proc
              hostPath:
                path: /proc
            - name: dev
              hostPath:
                path: /dev
            - name: sys
              hostPath:
                path: /sys
            - name: rootfs
              hostPath:
                path: /
                
    # hostNetwork、hostIPC、hostPID都为True时,表示这个Pod里的所有容器,会直接使用宿主机的网络,直接与宿主机进行IPC(进程间通信)通信,可以看到宿主机里正在运行的所有进程。加入了hostNetwork:true会直接将我们的宿主机的9100端口映射出来,从而不需要创建service 在我们的宿主机上就会有一个9100的端口
    
    # 更新node-exporter.yaml文件
    [root@k8s-master1 prometheus]# kubectl apply -f node-export.yaml
    
    # 查看node-exporter是否部署成功
    [root@k8s-master1 prometheus]# kubectl get pods -n monitor-sa -o wide
    NAME                  READY   STATUS    RESTARTS   AGE   IP               NODE          NOMINATED NODE   READINESS GATES
    node-exporter-nl5qz   1/1     Running   0          13s   192.168.40.181   k8s-node1     <none>           <none>
    node-exporter-nxwkf   1/1     Running   0          13s   192.168.40.180   k8s-master1   <none>           <none>
    node-exporter-x494t   1/1     Running   0          13s   192.168.40.182   k8s-node2     <none>           <none>
    
    # 通过node-exporter采集数据 curl  http://主机ip:9100/metrics
    # node-export默认的监听端口是9100,可以看到当前主机获取到的所有监控数据
    [root@k8s-master1 prometheus]# curl http://192.168.40.180:9100/metrics | grep node_cpu_seconds
    # HELP node_cpu_seconds_total Seconds the cpus spent in each mode.
    # TYPE node_cpu_seconds_total counter
    node_cpu_seconds_total{cpu="0",mode="idle"} 9429.89
    node_cpu_seconds_total{cpu="0",mode="iowait"} 3.96
    node_cpu_seconds_total{cpu="0",mode="irq"} 0
    node_cpu_seconds_total{cpu="0",mode="nice"} 2.81
    node_cpu_seconds_total{cpu="0",mode="softirq"} 45.77
    node_cpu_seconds_total{cpu="0",mode="steal"} 0
    node_cpu_seconds_total{cpu="0",mode="system"} 527.92
    node_cpu_seconds_total{cpu="0",mode="user"} 847.3
    node_cpu_seconds_total{cpu="1",mode="idle"} 9432.26
    node_cpu_seconds_total{cpu="1",mode="iowait"} 5.12
    node_cpu_seconds_total{cpu="1",mode="irq"} 0
    node_cpu_seconds_total{cpu="1",mode="nice"} 2.81
    node_cpu_seconds_total{cpu="1",mode="softirq"} 58
    node_cpu_seconds_total{cpu="1",mode="steal"} 0
    node_cpu_seconds_total{cpu="1",mode="system"} 528.33
    node_cpu_seconds_total{cpu="1",mode="user"} 814.66
    
    [root@k8s-master1 prometheus]# curl http://192.168.40.180:9100/metrics | grep node_load
    # HELP node_load1 1m load average.
    # TYPE node_load1 gauge
    node_load1 0.44
    # HELP node_load15 15m load average.
    # TYPE node_load15 gauge
    node_load15 0.89
    # HELP node_load5 5m load average.
    # TYPE node_load5 gauge
    node_load5 0.74
    

    三、Prometheus安装和配置

    3.1、Prometheus安装

    1)创建sa账号,对sa做rbac授权

    # 创建一个sa账号monitor
    [root@k8s-master1 prometheus]# kubectl create serviceaccount monitor -n monitor-sa
    
    # 把sa账号monitor通过clusterrolebing绑定到clusterrole上
    [root@k8s-master1 prometheus]# kubectl create clusterrolebinding monitor-clusterrolebinding -n monitor-sa --clusterrole=cluster-admin  --serviceaccount=monitor-sa:monitor
    

    2)创建prometheus数据存储目录

    # 将prometheus调度到k8s-node1节点
    [root@k8s-node1 ~]# mkdir /data && chmod 777 /data
    

    3)创建一个configmap存储卷,用来存放prometheus配置信息

    [root@k8s-master1 prometheus]# cat prometheus-cfg.yaml
    ---
    kind: ConfigMap
    apiVersion: v1
    metadata:
      labels:
        app: prometheus
      name: prometheus-config
      namespace: monitor-sa
    data:
      prometheus.yml: |
        global:
          scrape_interval: 15s
          scrape_timeout: 10s
          evaluation_interval: 1m
        scrape_configs:
        - job_name: 'kubernetes-node'
          kubernetes_sd_configs:
          - role: node
          relabel_configs:
          - source_labels: [__address__]
            regex: '(.*):10250'
            replacement: '${1}:9100'
            target_label: __address__
            action: replace
          - action: labelmap
            regex: __meta_kubernetes_node_label_(.+)
        - job_name: 'kubernetes-node-cadvisor'
          kubernetes_sd_configs:
          - role:  node
          scheme: https
          tls_config:
            ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
          bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
          relabel_configs:
          - action: labelmap
            regex: __meta_kubernetes_node_label_(.+)
          - target_label: __address__
            replacement: kubernetes.default.svc:443
          - source_labels: [__meta_kubernetes_node_name]
            regex: (.+)
            target_label: __metrics_path__
            replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor
        - job_name: 'kubernetes-apiserver'
          kubernetes_sd_configs:
          - role: endpoints
          scheme: https
          tls_config:
            ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
          bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
          relabel_configs:
          - source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name]
            action: keep
            regex: default;kubernetes;https
        - job_name: 'kubernetes-service-endpoints'
          kubernetes_sd_configs:
          - role: endpoints
          relabel_configs:
          - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape]
            action: keep
            regex: true
          - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme]
            action: replace
            target_label: __scheme__
            regex: (https?)
          - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]
            action: replace
            target_label: __metrics_path__
            regex: (.+)
          - source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port]
            action: replace
            target_label: __address__
            regex: ([^:]+)(?::d+)?;(d+)
            replacement: $1:$2
          - action: labelmap
            regex: __meta_kubernetes_service_label_(.+)
          - source_labels: [__meta_kubernetes_namespace]
            action: replace
            target_label: kubernetes_namespace
          - source_labels: [__meta_kubernetes_service_name]
            action: replace
            target_label: kubernetes_name 
    
    [root@k8s-master1 prometheus]# kubectl apply -f prometheus-cfg.yaml
    configmap/prometheus-config created
    

    配置详解:

    ---
    kind: ConfigMap
    apiVersion: v1
    metadata:
      labels:
        app: prometheus
      name: prometheus-config
      namespace: monitor-sa
    data:
      prometheus.yml: |
        global:
          scrape_interval: 15s #采集目标主机监控据的时间间隔
          scrape_timeout: 10s	# 数据采集超时时间,默认10s
          evaluation_interval: 1m 	#触发告警检测的时间,默认是1m
        scrape_configs:	# 配置数据源,称为target,每个target用job_name命名。又分为静态配置和服务发现
        - job_name: 'kubernetes-node'
          kubernetes_sd_configs:	# 使用的是k8s的服务发现
          - role: node	# 使用node角色,它使用默认的kubelet提供的http端口来发现集群中每个node节点
          relabel_configs:	# 重新标记
          - source_labels: [__address__]	# 配置的原始标签,匹配地址
            regex: '(.*):10250'		#匹配带有10250端口的url
            replacement: '${1}:9100'	#把匹配到的ip:10250的ip保留
            target_label: __address__	#新生成的url是${1}获取到的ip:9100
            action: replace	# 动作替换
          - action: labelmap
            regex: __meta_kubernetes_node_label_(.+) #匹配到下面正则表达式的标签会被保留,如果不做regex正则的话,默认只是会显示instance标签
        - job_name: 'kubernetes-node-cadvisor' # 抓取cAdvisor数据,是获取kubelet上/metrics/cadvisor接口数据来获取容器的资源使用情况
          kubernetes_sd_configs:
          - role:  node
          scheme: https
          tls_config:
            ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
          bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
          relabel_configs:
          - action: labelmap	# 把匹配到的标签保留
            regex: __meta_kubernetes_node_label_(.+)  #保留匹配到的具有__meta_kubernetes_node_label的标签
          - target_label: __address__	# 获取到的地址:__address__="192.168.40.180:10250"
            replacement: kubernetes.default.svc:443	# 把获取到的地址替换成新的地址kubernetes.default.svc:443
          - source_labels: [__meta_kubernetes_node_name]
            regex: (.+)	# 把原始标签中__meta_kubernetes_node_name值匹配到
            target_label: __metrics_path__	#获取__metrics_path__对应的值
            replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor	
            # 把metrics替换成新的值api/v1/nodes/k8s-master1/proxy/metrics/cadvisor
            # ${1}是__meta_kubernetes_node_name获取到的值
            # 新的url就是https://kubernetes.default.svc:443/api/v1/nodes/k8s-master1/proxy/metrics/cadvisor
        - job_name: 'kubernetes-apiserver'
          kubernetes_sd_configs:
          - role: endpoints	# 使用k8s中的endpoint服务发现,采集apiserver 6443端口获取到的数据
          scheme: https
          tls_config:
            ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
          bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
          relabel_configs:
          - source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name]
            # endpoint这个对象的名称空间,endpoint对象的服务名,exnpoint的端口名称
            action: keep	# 采集满足条件的实例,其他实例不采集
            regex: default;kubernetes;https	#正则匹配到的默认空间下的service名字是kubernetes,协议是https的endpoint类型保留下来
        - job_name: 'kubernetes-service-endpoints'
          kubernetes_sd_configs:
          - role: endpoints
          relabel_configs:
          - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape]
            action: keep
            regex: true
            # 重新打标仅抓取到的具有 "prometheus.io/scrape: true" 的annotation的端点,意思是说如果某个service具有prometheus.io/scrape = true annotation声明则抓取,annotation本身也是键值结构,所以这里的源标签设置为键,而regex设置值true,当值匹配到regex设定的内容时则执行keep动作也就是保留,其余则丢弃。
          - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme]
            action: replace
            target_label: __scheme__
            regex: (https?)
            # 重新设置scheme,匹配源标签__meta_kubernetes_service_annotation_prometheus_io_scheme也就是prometheus.io/scheme annotation,如果源标签的值匹配到regex,则把值替换为__scheme__对应的值。
          - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]
            action: replace
            target_label: __metrics_path__
            regex: (.+)
            # 应用中自定义暴露的指标,也许你暴露的API接口不是/metrics这个路径,那么你可以在这个POD对应的service中做一个"prometheus.io/path = /mymetrics" 声明,上面的意思就是把你声明的这个路径赋值给__metrics_path__,其实就是让prometheus来获取自定义应用暴露的metrices的具体路径,不过这里写的要和service中做好约定,如果service中这样写 prometheus.io/app-metrics-path: '/metrics' 那么你这里就要__meta_kubernetes_service_annotation_prometheus_io_app_metrics_path这样写。
          - source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port]
            action: replace
            target_label: __address__
            regex: ([^:]+)(?::d+)?;(d+)
            replacement: $1:$2
            # 暴露自定义的应用的端口,就是把地址和你在service中定义的 "prometheus.io/port = <port>" 声明做一个拼接,然后赋值给__address__,这样prometheus就能获取自定义应用的端口,然后通过这个端口再结合__metrics_path__来获取指标,如果__metrics_path__值不是默认的/metrics那么就要使用上面的标签替换来获取真正暴露的具体路径。
          - action: labelmap	#保留下面匹配到的标签
            regex: __meta_kubernetes_service_label_(.+)
          - source_labels: [__meta_kubernetes_namespace]
            action: replace	 # 替换__meta_kubernetes_namespace变成kubernetes_namespace
            target_label: kubernetes_namespace
          - source_labels: [__meta_kubernetes_service_name]
            action: replace
            target_label: kubernetes_name 
    

    4)通过deployment部署prometheus

    [root@k8s-master1 prometheus]# cat prometheus-deploy.yaml 
    ---
    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: prometheus-server
      namespace: monitor-sa
      labels:
        app: prometheus
    spec:
      replicas: 1
      selector:
        matchLabels:
          app: prometheus
          component: server
        #matchExpressions:
        #- {key: app, operator: In, values: [prometheus]}
        #- {key: component, operator: In, values: [server]}
      template:
        metadata:
          labels:
            app: prometheus
            component: server
          annotations:
            prometheus.io/scrape: 'false'
        spec:
          nodeName: k8s-node1	# 指定pod调度到哪个节点上	
          serviceAccountName: monitor
          containers:
          - name: prometheus
            image: prom/prometheus:v2.2.1
            imagePullPolicy: IfNotPresent
            command:
              - prometheus
              - --config.file=/etc/prometheus/prometheus.yml
              - --storage.tsdb.path=/prometheus	# 数据存储目录
              - --storage.tsdb.retention=720h	# 数据保存时长
              - --web.enable-lifecycle	# 开启热加载
            ports:
            - containerPort: 9090
              protocol: TCP
            volumeMounts:
            - mountPath: /etc/prometheus/prometheus.yml
              name: prometheus-config
              subPath: prometheus.yml
            - mountPath: /prometheus/
              name: prometheus-storage-volume
          volumes:
            - name: prometheus-config
              configMap:
                name: prometheus-config
                items:
                  - key: prometheus.yml
                    path: prometheus.yml
                    mode: 0644
            - name: prometheus-storage-volume
              hostPath:
               path: /data
               type: Directory
    
    [root@k8s-master1 prometheus]# kubectl apply -f prometheus-deploy.yaml
    deployment.apps/prometheus-server created
    [root@k8s-master1 prometheus]# kubectl get pods -o wide -n monitor-sa 
    NAME                                 READY   STATUS    RESTARTS   AGE   IP               NODE          NOMINATED NODE   READINESS GATES
    node-exporter-nl5qz                  1/1     Running   0          38m   192.168.40.181   k8s-node1     <none>           <none>
    node-exporter-nxwkf                  1/1     Running   0          38m   192.168.40.180   k8s-master1   <none>           <none>
    node-exporter-x494t                  1/1     Running   0          38m   192.168.40.182   k8s-node2     <none>           <none>
    prometheus-server-689fb8cdbc-j4qq5   1/1     Running   0          9s    10.244.36.69     k8s-node1     <none>           <none>
    

    5)给prometheus pod创建一个service

    [root@k8s-master1 prometheus]# cat prometheus-svc.yaml 
    apiVersion: v1
    kind: Service
    metadata:
      name: prometheus
      namespace: monitor-sa
      labels:
        app: prometheus
    spec:
      type: NodePort
      ports:
        - port: 9090
          targetPort: 9090
          protocol: TCP
      selector:
        app: prometheus
        component: server
        
    [root@k8s-master1 prometheus]# kubectl apply -f prometheus-svc.yaml
    service/prometheus created
    
    # 查看service在物理机映射的端口
    [root@k8s-master1 prometheus]# kubectl get svc -n monitor-sa
    NAME         TYPE       CLUSTER-IP      EXTERNAL-IP   PORT(S)          AGE
    prometheus   NodePort   10.99.104.223   <none>        9090:32367/TCP   48s
    
    # 通过上面可以看到service在宿主机上映射的端口是32367,这样我们访问k8s集群的master1节点的ip:32367,就可以访问到prometheus的web ui界面了
    

    image-20210711211035326

    点击页面的Status->Targets,可看到如下,说明我们配置的服务发现可以正常采集数据

    image-20210711211220073

    image-20210711211238458

    3.2、Prometheus热加载

    # 为了每次修改配置文件可以热加载prometheus,也就是不停止prometheus,就可以使配置生效,想要使配置生效可用如下热加载命令:
    [root@k8s-master1 prometheus]# kubectl get pods -n monitor-sa -o wide -l app=prometheus
    NAME                                 READY   STATUS    RESTARTS   AGE     IP             NODE        NOMINATED NODE   READINESS GATES
    prometheus-server-689fb8cdbc-kcsw2   1/1     Running   0          5m39s   10.244.36.70   k8s-node1   <none>           <none>
    
    # 想要使配置生效可用如下命令热加载:
    [root@k8s-master1 prometheus]# curl -X POST http://10.244.36.70:9090/-/reload
    
    # 查看log
    [root@k8s-master1 prometheus]# kubectl logs -n monitor-sa prometheus-server-689fb8cdbc-kcsw2
    

    image-20210711211710040

    # 热加载速度比较慢,可以暴力重启prometheus,如修改上面的prometheus-cfg.yaml文件之后,可执行如下强制删除:
    [root@k8s-master1 prometheus]# kubectl delete -f prometheus-cfg.yaml
    [root@k8s-master1 prometheus]# kubectl delete -f prometheus-deploy.yaml
    # 然后再通过apply更新:
    [root@k8s-master1 prometheus]# kubectl apply -f prometheus-cfg.yaml
    [root@k8s-master1 prometheus]# kubectl apply -f prometheus-deploy.yaml
    #注意:线上最好热加载,暴力删除可能造成监控数据的丢失
    

    四、Grafana的安装和配置

    4.1、Grafana介绍

    Grafana是一个跨平台的开源的度量分析和可视化工具,可以将采集的数据可视化的展示,并及时通知给告警接收方。它主要有以下六大特点:

    1)展示方式:快速灵活的客户端图表,面板插件有许多不同方式的可视化指标和日志,官方库中具有丰富的仪表盘插件,比如热图、折线图、图表等多种展示方式;

    2)数据源:Graphite,InfluxDB,OpenTSDB,Prometheus,Elasticsearch,CloudWatch和KairosDB等;

    3)通知提醒:以可视方式定义最重要指标的警报规则,Grafana将不断计算并发送通知,在数据达到阈值时通过Slack、PagerDuty等获得通知;

    4)混合展示:在同一图表中混合使用不同的数据源,可以基于每个查询指定数据源,甚至自定义数据源;

    5)注释:使用来自不同数据源的丰富事件注释图表,将鼠标悬停在事件上会显示完整的事件元数据和标记。

    4.2、Grafana安装

    # 准备yaml文件
    [root@k8s-master1 prometheus]# cat grafana.yaml 
    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: monitoring-grafana
      namespace: kube-system
    spec:
      replicas: 1
      selector:
        matchLabels:
          task: monitoring
          k8s-app: grafana
      template:
        metadata:
          labels:
            task: monitoring
            k8s-app: grafana
        spec:
          containers:
          - name: grafana
            image: hujinzhong/heapster-grafana-amd64:v5.0.4
            ports:
            - containerPort: 3000
              protocol: TCP
            volumeMounts:
            - mountPath: /etc/ssl/certs
              name: ca-certificates
              readOnly: true
            - mountPath: /var
              name: grafana-storage
            env:
            - name: INFLUXDB_HOST
              value: monitoring-influxdb
            - name: GF_SERVER_HTTP_PORT
              value: "3000"
              # The following env variables are required to make Grafana accessible via
              # the kubernetes api-server proxy. On production clusters, we recommend
              # removing these env variables, setup auth for grafana, and expose the grafana
              # service using a LoadBalancer or a public IP.
            - name: GF_AUTH_BASIC_ENABLED
              value: "false"
            - name: GF_AUTH_ANONYMOUS_ENABLED
              value: "true"
            - name: GF_AUTH_ANONYMOUS_ORG_ROLE
              value: Admin
            - name: GF_SERVER_ROOT_URL
              # If you're only using the API Server proxy, set this value instead:
              # value: /api/v1/namespaces/kube-system/services/monitoring-grafana/proxy
              value: /
          volumes:
          - name: ca-certificates
            hostPath:
              path: /etc/ssl/certs
          - name: grafana-storage
            emptyDir: {}
    ---
    apiVersion: v1
    kind: Service
    metadata:
      labels:
        # For use as a Cluster add-on (https://github.com/kubernetes/kubernetes/tree/master/cluster/addons)
        # If you are NOT using this as an addon, you should comment out this line.
        kubernetes.io/cluster-service: 'true'
        kubernetes.io/name: monitoring-grafana
      name: monitoring-grafana
      namespace: kube-system
    spec:
      # In a production setup, we recommend accessing Grafana through an external Loadbalancer
      # or through a public IP.
      # type: LoadBalancer
      # You could also use NodePort to expose the service at a randomly-generated port
      # type: NodePort
      ports:
      - port: 80
        targetPort: 3000
      selector:
        k8s-app: grafana
      type: NodePort
    
    # 更新yaml文件:
    [root@k8s-master1 prometheus]# kubectl apply -f grafana.yaml
    
    # 查看grafana是否创建成功:
    [root@k8s-master1 prometheus]# kubectl get pods -n kube-system -l task=monitoring -o wide
    NAME                                  READY   STATUS    RESTARTS   AGE   IP               NODE        NOMINATED NODE   READINESS GATES
    monitoring-grafana-675798bf47-z9dpx   1/1     Running   0          19s   10.244.169.135   k8s-node2   <none>           <none>
    
    # 查看grafana前端的service
    [root@k8s-master1 prometheus]# kubectl get svc -n kube-system | grep grafana  
    monitoring-grafana   NodePort    10.105.174.145   <none>        80:31715/TCP             63s
    

    4.3、配置Grafana

    1)登陆grafana,在浏览器访问http://192.168.40.180:31715

    image-20210711215134601

    2)开始配置grafana的web界面:选择Create your first data source

    image-20210711215451720

    4.4、导入监控模板

    官方链接搜索:https://grafana.com/dashboards?dataSource=prometheus&search=kubernetes

    4.4.1、监控node状态

    点击左侧+号下面的Import,导入node_exporter.json模板

    image-20210711215903485

    image-20210711215944022

    image-20210711220005239

    4.4.2、监控容器状态

    点击左侧+号下面的Import,导入docker_rev1.json模板

    image-20210711220225850

    image-20210711220249773

    image-20210711220306034

    作者:Lawrence

    -------------------------------------------

    个性签名:独学而无友,则孤陋而寡闻。做一个灵魂有趣的人!

    扫描上面二维码关注我
    如果你真心觉得文章写得不错,而且对你有所帮助,那就不妨帮忙“推荐"一下,您的“推荐”和”打赏“将是我最大的写作动力!
    本文版权归作者所有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接.
  • 相关阅读:
    oracle数据泵导入导出命令
    深入理解JVM—JVM内存模型
    JVM 内存初学 堆(heap)、栈(stack)和方法区(method)
    Java中Comparable和Comparator接口区别分析
    Java中的匿名内部类总结
    Git版本控制软件结合GitHub从入门到精通常用命令学习手册
    Git客户端图文详解如何安装配置GitHub操作流程攻略
    Java内部类详解
    Java类加载原理解析
    OracleDBconsoleorcl服务无法启动的原因及解决思路
  • 原文地址:https://www.cnblogs.com/hujinzhong/p/14999877.html
Copyright © 2011-2022 走看看