zoukankan      html  css  js  c++  java
  • 并发编程实战-线程池

    线程池概述

    • 什么是线程池

    • 为什么使用线程池

    • 线程池的优势

      • 第一:降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。

      • 第二:提高响应速度。当任务到达时,任务可以不需要的等到线程创建就能立即执行。

      • 第三:提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。但是要做到合理的利用线程池,必须对其原理了如指掌。

    创建一个线程池并提交线程任务

    线程池源码解析

    参数认识

    1. corePoolSize : 线程池的基本大小,当提交一个任务到线程池时,线程池会创建一个线程来执行任务,即使其他空闲的基本线程能够执行新任务也会创建线程,等到需要执行的任务数大于线程池基本大小时就不再创建。如果调用了线程池的prestartAllCoreThreads方法,线程池会提前创建并启动所有基本线程。

    2. runnableTaskQueue:任务对列,用于保存等待执行的任务的阻塞队列。可以选择以下几个阻塞队列。

    • ArrayBlockingQueue:是一个基于数组结构的有界阻塞队列,此队列按 FIFO(先进先出)原则对元素进行排序。

    • LinkedBlockingQueue:一个基于链表结构的阻塞队列,此队列按FIFO (先进先出) 排序元素,吞吐量通常要高于ArrayBlockingQueue。静态工厂方法Executors.newFixedThreadPool()使用了这个队列。

    • SynchronousQueue:一个不存储元素的阻塞队列。每个插入操作必须等到另一个线程调用移除操作,否则插入操作一直处于阻塞状态,吞吐量通常要高于LinkedBlockingQueue,静态工厂方法Executors.newCachedThreadPool使用了这个队列。

    • PriorityBlockingQueue:一个具有优先级得无限阻塞队列。

    1. maximumPoolSize:线程池最大大小,线程池允许创建的最大线程数。如果队列满了,并且已创建的线程数小于最大线程数,则线程池会再创建新的线程执行任务。值得注意的是如果使用了无界的任务队列这个参数就没什么效果。

    2. ThreadFactory:用于设置创建线程的工厂,可以通过线程工厂给每个创建出来的线程设置更有意义的名字,Debug和定位问题时非常又帮助。

    3. RejectedExecutionHandler(饱和策略):当队列和线程池都满了,说明线程池处于饱和状态,那么必须采取一种策略处理提交的新任务。这个策略默认情况下是AbortPolicy,表示无法处理新任务时抛出异常。

    • CallerRunsPolicy:只用调用者所在线程来运行任务。

    • DiscardOldestPolicy:丢弃队列里最近的一个任务,并执行当前任务。

    • DiscardPolicy:不处理,丢弃掉。

    • 当然也可以根据应用场景需要来实现RejectedExecutionHandler接口自定义策略。如记录日志或持久化不能处理的任务。

    1. keepAliveTime :线程活动保持时间,线程池的工作线程空闲后,保持存活的时间。所以如果任务很多,并且每个任务执行的时间比较短,可以调大这个时间,提高线程的利用率。

    2. TimeUnit:线程活动保持时间的单位,可选的单位有天(DAYS),小时(HOURS),分钟(MINUTES),毫秒(MILLISECONDS),微秒(MICROSECONDS, 千分之一毫秒)和毫微秒(NANOSECONDS, 千分之一微秒)。

    3. 类中其他属性

    
        // 线程池的控制状态:用来表示线程池的运行状态(整型的高3位)和运行的worker数量(低29位)
        private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
        // 29位的偏移量
        private static final int COUNT_BITS = Integer.SIZE - 3;
        // 最大容量(2^29 - 1)
        private static final int CAPACITY   = (1 << COUNT_BITS) - 1;
    
        // runState is stored in the high-order bits
        // 线程运行状态,总共有5个状态,需要3位来表示(所以偏移量的29 = 32 - 3)
       /**
        * RUNNING    :    接受新任务并且处理已经进入阻塞队列的任务
        * SHUTDOWN    :    不接受新任务,但是处理已经进入阻塞队列的任务
        * STOP        :    不接受新任务,不处理已经进入阻塞队列的任务并且中断正在运行的任务
        * TIDYING    :    所有的任务都已经终止,workerCount为0, 线程转化为TIDYING状态并且调用terminated钩子函数
        * TERMINATED:    terminated钩子函数已经运行完成
        **/
        private static final int RUNNING    = -1 << COUNT_BITS;
        private static final int SHUTDOWN   =  0 << COUNT_BITS;
        private static final int STOP       =  1 << COUNT_BITS;
        private static final int TIDYING    =  2 << COUNT_BITS;
        private static final int TERMINATED =  3 << COUNT_BITS;
        // 阻塞队列
        private final BlockingQueue<Runnable> workQueue;
        // 可重入锁
        private final ReentrantLock mainLock = new ReentrantLock();
        // 存放工作线程集合
        private final HashSet<Worker> workers = new HashSet<Worker>();
        // 终止条件
        private final Condition termination = mainLock.newCondition();
        // 最大线程池容量
        private int largestPoolSize;
        // 已完成任务数量
        private long completedTaskCount;
        // 线程工厂
        private volatile ThreadFactory threadFactory;
        // 拒绝执行处理器
        private volatile RejectedExecutionHandler handler;
        // 线程等待运行时间
        private volatile long keepAliveTime;
        // 是否运行核心线程超时
        private volatile boolean allowCoreThreadTimeOut;
        // 核心池的大小
        private volatile int corePoolSize;
        // 最大线程池大小
        private volatile int maximumPoolSize;
        // 默认拒绝执行处理器
        private static final RejectedExecutionHandler defaultHandler =
            new AbortPolicy();
    

    构造方法

        public ThreadPoolExecutor(int corePoolSize,
                                  int maximumPoolSize,
                                  long keepAliveTime,
                                  TimeUnit unit,
                                  BlockingQueue<Runnable> workQueue,
                                  ThreadFactory threadFactory,
                                  RejectedExecutionHandler handler) {
            if (corePoolSize < 0 ||                                                // 核心大小不能小于0
                maximumPoolSize <= 0 ||                                            // 线程池的初始最大容量不能小于0
                maximumPoolSize < corePoolSize ||                                // 初始最大容量不能小于核心大小
                keepAliveTime < 0)                                                // keepAliveTime不能小于0
                throw new IllegalArgumentException();                                
            if (workQueue == null || threadFactory == null || handler == null)
                throw new NullPointerException();
            // 初始化相应的域
            this.corePoolSize = corePoolSize;
            this.maximumPoolSize = maximumPoolSize;
            this.workQueue = workQueue;
            this.keepAliveTime = unit.toNanos(keepAliveTime);
            this.threadFactory = threadFactory;
            this.handler = handler;
        }
    

    提交任务

    /*
    * 进行下面三步
    *
    * 1. 如果运行的线程小于corePoolSize,则尝试使用用户定义的Runnalbe对象创建一个新的线程
    *     调用addWorker函数会原子性的检查runState和workCount,通过返回false来防止在不应
    *     该添加线程时添加了线程
    * 2. 如果一个任务能够成功入队列,在添加一个线城时仍需要进行双重检查(因为在前一次检查后
    *     该线程死亡了),或者当进入到此方法时,线程池已经shutdown了,所以需要再次检查状态,
    *    若有必要,当停止时还需要回滚入队列操作,或者当线程池没有线程时需要创建一个新线程
    * 3. 如果无法入队列,那么需要增加一个新线程,如果此操作失败,那么就意味着线程池已经shut
    *     down或者已经饱和了,所以拒绝任务
    */
    public void execute(Runnable command) {
        if (command == null)
            throw new NullPointerException();
        // 获取线程池控制状态
        int c = ctl.get();
        if (workerCountOf(c) < corePoolSize) { // worker数量小于corePoolSize
            if (addWorker(command, true)) // 添加worker
                // 成功则返回
                return;
            // 不成功则再次获取线程池控制状态
            c = ctl.get();
        }
        // 线程池处于RUNNING状态,将用户自定义的Runnable对象添加进workQueue队列
        if (isRunning(c) && workQueue.offer(command)) { 
            // 再次检查,获取线程池控制状态
            int recheck = ctl.get();
            // 线程池不处于RUNNING状态,将自定义任务从workQueue队列中移除
            if (! isRunning(recheck) && remove(command)) 
                // 拒绝执行命令
                reject(command);
            else if (workerCountOf(recheck) == 0) // worker数量等于0
                // 添加worker
                addWorker(null, false);
        }
        else if (!addWorker(command, false)) // 添加worker失败
            // 拒绝执行命令
            reject(command);
    }
    

    addWorker

    1. 原子性的增加workerCount。

    2. 将用户给定的任务封装成为一个worker,并将此worker添加进workers集合中。

    3. 启动worker对应的线程,并启动该线程,运行worker的run方法。

    4. 回滚worker的创建动作,即将worker从workers集合中删除,并原子性的减少workerCount。

    private boolean addWorker(Runnable firstTask, boolean core) {
        retry:
        for (;;) { // 外层无限循环
            // 获取线程池控制状态
            int c = ctl.get();
            // 获取状态
            int rs = runStateOf(c);
    
            // Check if queue empty only if necessary.
            if (rs >= SHUTDOWN &&            // 状态大于等于SHUTDOWN,初始的ctl为RUNNING,小于SHUTDOWN
                ! (rs == SHUTDOWN &&        // 状态为SHUTDOWN
                   firstTask == null &&        // 第一个任务为null
                   ! workQueue.isEmpty()))     // worker队列不为空
                // 返回
                return false;
    
            for (;;) {
                // worker数量
                int wc = workerCountOf(c);
                if (wc >= CAPACITY ||                                // worker数量大于等于最大容量
                    wc >= (core ? corePoolSize : maximumPoolSize))    // worker数量大于等于核心线程池大小或者最大线程池大小
                    return false;
                if (compareAndIncrementWorkerCount(c))                 // 比较并增加worker的数量
                    // 跳出外层循环
                    break retry;
                // 获取线程池控制状态
                c = ctl.get();  // Re-read ctl
                if (runStateOf(c) != rs) // 此次的状态与上次获取的状态不相同
                    // 跳过剩余部分,继续循环
                    continue retry;
                // else CAS failed due to workerCount change; retry inner loop
            }
        }
    
        // worker开始标识
        boolean workerStarted = false;
        // worker被添加标识
        boolean workerAdded = false;
        // 
        Worker w = null;
        try {
            // 初始化worker
            w = new Worker(firstTask);
            // 获取worker对应的线程
            final Thread t = w.thread;
            if (t != null) { // 线程不为null
                // 线程池锁
                final ReentrantLock mainLock = this.mainLock;
                // 获取锁
                mainLock.lock();
                try {
                    // Recheck while holding lock.
                    // Back out on ThreadFactory failure or if
                    // shut down before lock acquired.
                    // 线程池的运行状态
                    int rs = runStateOf(ctl.get());
    
                    if (rs < SHUTDOWN ||                                    // 小于SHUTDOWN
                        (rs == SHUTDOWN && firstTask == null)) {            // 等于SHUTDOWN并且firstTask为null
                        if (t.isAlive()) // precheck that t is startable    // 线程刚添加进来,还未启动就存活
                            // 抛出线程状态异常
                            throw new IllegalThreadStateException();
                        // 将worker添加到worker集合
                        workers.add(w);
                        // 获取worker集合的大小
                        int s = workers.size();
                        if (s > largestPoolSize) // 队列大小大于largestPoolSize
                            // 重新设置largestPoolSize
                            largestPoolSize = s;
                        // 设置worker已被添加标识
                        workerAdded = true;
                    }
                } finally {
                    // 释放锁
                    mainLock.unlock();
                }
                if (workerAdded) { // worker被添加
                    // 开始执行worker的run方法
                    t.start();
                    // 设置worker已开始标识
                    workerStarted = true;
                }
            }
        } finally {
            if (! workerStarted) // worker没有开始
                // 添加worker失败
                addWorkerFailed(w);
        }
        return workerStarted;
    }
    

    执行任务

    runWorker函数中会实际执行给定任务(即调用用户重写的run方法),并且当给定任务完成后,会继续从阻塞队列中取任务,直到阻塞队列为空(即任务全部完成)。在执行给定任务时,会调用钩子函数,利用钩子函数可以完成用户自定义的一些逻辑。在runWorker中会调用到getTask函数和processWorkerExit钩子函数

    final void runWorker(Worker w) {
        // 获取当前线程
        Thread wt = Thread.currentThread();
        // 获取w的firstTask
        Runnable task = w.firstTask;
        // 设置w的firstTask为null
        w.firstTask = null;
        // 释放锁(设置state为0,允许中断)
        w.unlock(); // allow interrupts
        boolean completedAbruptly = true;
        try {
            while (task != null || (task = getTask()) != null) { // 任务不为null或者阻塞队列还存在任务
                // 获取锁
                w.lock();
                // If pool is stopping, ensure thread is interrupted;
                // if not, ensure thread is not interrupted.  This
                // requires a recheck in second case to deal with
                // shutdownNow race while clearing interrupt
                if ((runStateAtLeast(ctl.get(), STOP) ||    // 线程池的运行状态至少应该高于STOP
                     (Thread.interrupted() &&                // 线程被中断
                      runStateAtLeast(ctl.get(), STOP))) &&    // 再次检查,线程池的运行状态至少应该高于STOP
                    !wt.isInterrupted())                    // wt线程(当前线程)没有被中断
                    wt.interrupt();                            // 中断wt线程(当前线程)
                try {
                    // 在执行之前调用钩子函数
                    beforeExecute(wt, task);
                    Throwable thrown = null;
                    try {
                        // 运行给定的任务
                        task.run();
                    } catch (RuntimeException x) {
                        thrown = x; throw x;
                    } catch (Error x) {
                        thrown = x; throw x;
                    } catch (Throwable x) {
                        thrown = x; throw new Error(x);
                    } finally {
                        // 执行完后调用钩子函数
                        afterExecute(task, thrown);
                    }
                } finally {
                    task = null;
                    // 增加给worker完成的任务数量
                    w.completedTasks++;
                    // 释放锁
                    w.unlock();
                }
            }
            completedAbruptly = false;
        } finally {
            // 处理完成后,调用钩子函数
            processWorkerExit(w, completedAbruptly);
        }
    }
    

    此函数用于从workerQueue阻塞队列中获取Runnable对象,由于是阻塞队列,所以支持有限时间等待(poll)和无限时间等待(take)。在该函数中还会响应shutDown和、shutDownNow函数的操作,若检测到线程池处于SHUTDOWN或STOP状态,则会返回null,而不再返回阻塞队列中的Runnalbe对象。

        private Runnable getTask() {
            boolean timedOut = false; // Did the last poll() time out?
    
            for (;;) { // 无限循环,确保操作成功
                // 获取线程池控制状态
                int c = ctl.get();
                // 运行的状态
                int rs = runStateOf(c);
    
                // Check if queue empty only if necessary.
                if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) { // 大于等于SHUTDOWN(表示调用了shutDown)并且(大于等于STOP(调用了shutDownNow)或者worker阻塞队列为空)
                    // 减少worker的数量
                    decrementWorkerCount();
                    // 返回null,不执行任务
                    return null;
                }
                // 获取worker数量
                int wc = workerCountOf(c);
    
                // Are workers subject to culling?
                boolean timed = allowCoreThreadTimeOut || wc > corePoolSize; // 是否允许coreThread超时或者workerCount大于核心大小
    
                if ((wc > maximumPoolSize || (timed && timedOut))     // worker数量大于maximumPoolSize
                    && (wc > 1 || workQueue.isEmpty())) {            // workerCount大于1或者worker阻塞队列为空(在阻塞队列不为空时,需要保证至少有一个wc)
                    if (compareAndDecrementWorkerCount(c))            // 比较并减少workerCount
                        // 返回null,不执行任务,该worker会退出
                        return null;
                    // 跳过剩余部分,继续循环
                    continue;
                }
    
                try {
                    Runnable r = timed ?
                        workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :    // 等待指定时间
                        workQueue.take();                                        // 一直等待,直到有元素
                    if (r != null)
                        return r;
                    // 等待指定时间后,没有获取元素,则超时
                    timedOut = true;
                } catch (InterruptedException retry) {
                    // 抛出了被中断异常,重试,没有超时
                    timedOut = false;
                }
            }
        }
    

    processWorkerExit函数是在worker退出时调用到的钩子函数,而引起worker退出的主要因素如下

    1. 阻塞队列已经为空,即没有任务可以运行了。

    2. 调用了shutDown或shutDownNow函数

    此函数会根据是否中断了空闲线程来确定是否减少workerCount的值,并且将worker从workers集合中移除并且会尝试终止线程池。

        private void processWorkerExit(Worker w, boolean completedAbruptly) {
            if (completedAbruptly) // 如果被中断,则需要减少workCount    // If abrupt, then workerCount wasn't adjusted
                decrementWorkerCount();
            // 获取可重入锁
            final ReentrantLock mainLock = this.mainLock;
            // 获取锁
            mainLock.lock();
            try {
                // 将worker完成的任务添加到总的完成任务中
                completedTaskCount += w.completedTasks;
                // 从workers集合中移除该worker
                workers.remove(w);
            } finally {
                // 释放锁
                mainLock.unlock();
            }
            // 尝试终止
            tryTerminate();
            // 获取线程池控制状态
            int c = ctl.get();
            if (runStateLessThan(c, STOP)) { // 小于STOP的运行状态
                if (!completedAbruptly) {
                    int min = allowCoreThreadTimeOut ? 0 : corePoolSize;
                    if (min == 0 && ! workQueue.isEmpty()) // 允许核心超时并且workQueue阻塞队列不为空
                        min = 1;
                    if (workerCountOf(c) >= min) // workerCount大于等于min
                        // 直接返回
                        return; // replacement not needed
                }
                // 添加worker
                addWorker(null, false);
            }
        }
    

    关闭线程池

        public void shutdown() {
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                // 检查shutdown权限
                checkShutdownAccess();
                // 设置线程池控制状态为SHUTDOWN
                advanceRunState(SHUTDOWN);
                // 中断空闲worker
                interruptIdleWorkers();
                // 调用shutdown钩子函数
                onShutdown(); // hook for ScheduledThreadPoolExecutor
            } finally {
                mainLock.unlock();
            }
            // 尝试终止
            tryTerminate();
        }
    
        final void tryTerminate() {
            for (;;) { // 无限循环,确保操作成功
                // 获取线程池控制状态
                int c = ctl.get();
                if (isRunning(c) ||                                            // 线程池的运行状态为RUNNING
                    runStateAtLeast(c, TIDYING) ||                            // 线程池的运行状态最小要大于TIDYING
                    (runStateOf(c) == SHUTDOWN && ! workQueue.isEmpty()))    // 线程池的运行状态为SHUTDOWN并且workQueue队列不为null
                    // 不能终止,直接返回
                    return;
                if (workerCountOf(c) != 0) { // 线程池正在运行的worker数量不为0    // Eligible to terminate
                    // 仅仅中断一个空闲的worker
                    interruptIdleWorkers(ONLY_ONE);
                    return;
                }
                // 获取线程池的锁
                final ReentrantLock mainLock = this.mainLock;
                // 获取锁
                mainLock.lock();
                try {
                    if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) { // 比较并设置线程池控制状态为TIDYING
                        try {
                            // 终止,钩子函数
                            terminated();
                        } finally {
                            // 设置线程池控制状态为TERMINATED
                            ctl.set(ctlOf(TERMINATED, 0));
                            // 释放在termination条件上等待的所有线程
                            termination.signalAll();
                        }
                        return;
                    }
                } finally {
                    // 释放锁
                    mainLock.unlock();
                }
                // else retry on failed CAS
            }
        }
    
        private void interruptIdleWorkers(boolean onlyOne) {
            // 线程池的锁
            final ReentrantLock mainLock = this.mainLock;
            // 获取锁
            mainLock.lock();
            try {
                for (Worker w : workers) { // 遍历workers队列
                    // worker对应的线程
                    Thread t = w.thread;
                    if (!t.isInterrupted() && w.tryLock()) { // 线程未被中断并且成功获得锁
                        try {
                            // 中断线程
                            t.interrupt();
                        } catch (SecurityException ignore) {
                        } finally {
                            // 释放锁
                            w.unlock();
                        }
                    }
                    if (onlyOne) // 若只中断一个,则跳出循环
                        break;
                }
            } finally {
                // 释放锁
                mainLock.unlock();
            }
        }
    
  • 相关阅读:
    《单元测试之道C#版——使用NUnit》测试哪些内容 RightBICEP
    《领域驱动设计》读书笔记(三) 消化知识
    法雷数列浅谈 RL
    四种常用最短路径算法模板 RL
    PIG 学习笔记1
    readme
    隐藏系统队伍框架
    关于时间的一些函数
    两个作用相同的宏.
    自动拾取确认,自动复活确认
  • 原文地址:https://www.cnblogs.com/hulichao/p/thread_source.html
Copyright © 2011-2022 走看看