zoukankan      html  css  js  c++  java
  • [leecode]Best Time to Buy and Sell Stock III

    Best Time to Buy and Sell Stock III

    Say you have an array for which the ith element is the price of a given stock on day i.

    Design an algorithm to find the maximum profit. You may complete at most two transactions.

    Note:
    You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).

    算法分析:

    DP+二分:

    正向遍历,用一个一维数组left[i]表示0 ~ i 的最大收益

    逆向遍历,用一个一维数组right[i] 表示 i ~ length - 1的最大收益

    最后求出最大的left[i] + right[i]

    对于点j+1,求price[0..j+1]的最大profit时,很多工作是重复的,在求price[0..j]的最大profit中已经做过了。
    类似于Best Time to Buy and Sell Stock,可以在O(1)的时间从price[0..j]推出price[0..j+1]的最大profit。
    但是如何从price[j..n-1]推出price[j+1..n-1]?反过来思考,我们可以用O(1)的时间由price[j+1..n-1]推出price[j..n-1]。
    最终算法:
    数组l[i]记录了price[0..i]的最大profit,
    数组r[i]记录了price[i..n]的最大profit。
    已知l[i],求l[i+1]是简单的,同样已知r[i],求r[i-1]也很容易。
    最后,我们再用O(n)的时间找出最大的l[i]+r[i],即为题目所求。

    代码如下:

     1 public class Solution {
     2     public int maxProfit(int[] prices) {
     3         if(prices == null || prices.length < 2) return 0;
     4         int length = prices.length;
     5         int[] left = new int[length];
     6         int[] right = new int[length];
     7         int buyIn = prices[0],sellOut = prices[length - 1];
     8         for(int i = 1; i < length; i++){
     9             left[i] = Math.max(left[i - 1], prices[i] - buyIn);
    10             buyIn = Math.min(prices[i],buyIn);
    11         }
    12         for(int i = length - 2; i >= 0; i--){
    13             right[i] = Math.max(right[i + 1], sellOut - prices[i]);
    14             sellOut = Math.max(prices[i],sellOut);
    15         }
    16         int res = 0;
    17         for(int i = 0; i < length; i++){
    18             res = Math.max(res, left[i] + right[i]);
    19         }
    20         return res;
    21     }
    22 }
  • 相关阅读:
    leetcode--Populating Next Right Pointers in Each Node II
    leetcode—Populating Next Right Pointers in Each Node
    Pascal's Triangle II
    leetcode—pascal triangle
    leetcode—triangle
    October 23rd, 2017 Week 43rd Monday
    October 22nd, 2017 Week 43rd Sunday
    October 21st 2017 Week 42nd Saturday
    October 20th 2017 Week 42nd Friday
    October 19th 2017 Week 42nd Thursday
  • 原文地址:https://www.cnblogs.com/huntfor/p/3937750.html
Copyright © 2011-2022 走看看