zoukankan      html  css  js  c++  java
  • 【计算机视觉】常用背景模型介绍

    转自:http://www.cnblogs.com/xrwang/archive/2010/02/21/ForegroundDetection.html

    作者:王先荣

    前言
        在很多情况下,我们需要从一段视频或者一系列图片中找到感兴趣的目标,比如说当人进入已经打烊的超市时发出警报。为了达到这个目的,我们首先需要“学习”背景模型,然后将背景模型和当前图像进行比较,从而得到前景目标。

    背景建模
        背景与前景都是相对的概念,以高速公路为例:有时我们对高速公路上来来往往的汽车感兴趣,这时汽车是前景,而路面以及周围的环境是背景;有时我们仅仅对闯入高速公路的行人感兴趣,这时闯入者是前景,而包括汽车之类的其他东西又成了背景。背景建模的方式很多,或高级或简单。不过各种背景模型都有自己适用的场合,即使是高级的背景模型也不能适用于任何场合。下面我将逐一介绍OpenCv中已经实现,或者在《学习OpenCv》这本书中介绍的背景建模方法。
    1.帧差
        帧差可说是最简单的一种背景模型,指定视频中的一幅图像为背景,用当前帧与背景进行比较,根据需要过滤较小的差异,得到的结果就是前景了。OpenCv中为我们提供了一种动态计算阀值,然后用帧差进行前景检测的函数——cvChangeDetection(注:EmguCv中没有封装cvChangeDetection,我将其声明到OpenCvInvoke类中,具体实现见文末代码)。而通过对两幅图像使用减法运算,然后再用指定阀值过滤的方法在《学习OpenCv》一书中有详细的介绍。它们的实现代码如下:

    帧差:

    [DllImport("cvaux200.dll")]  
    public static extern void cvChangeDetection(IntPtr prev_frame, IntPtr curr_frame, IntPtr change_mask);  
    //backgroundMask为背景,imageBackgroundModel为背景模型,currentFrame为当前帧  
    if (backgroundMask == null)  
        backgroundMask = new Image<Gray, byte>(imageBackgroundModel.Size);  
    if (threshold == 0d)  
        //如果阀值为0,使用OpenCv中的自适应动态背景检测  
        OpenCvInvoke.cvChangeDetection(imageBackgroundModel.Ptr, currentFrame.Ptr, backgroundMask.Ptr);  
    else  
    {  
        //如果设置了阀值,使用帧差  
        Image<TColor, Byte> imageTemp = imageBackgroundModel.AbsDiff(currentFrame);  
        Image<Gray, Byte>[] images = imageTemp.Split();  
        backgroundMask.SetValue(0d);  
        foreach (Image<Gray, Byte> image in images)  
            backgroundMask._Or(image.ThresholdBinary(new Gray(threshold), new Gray(255d)));  
    }  
    backgroundMask._Not();

    对于类似无人值守的仓库防盗之类的场合,使用帧差效果估计很好。


    2.背景统计模型
        背景统计模型是:对一段时间的背景进行统计,然后计算其统计数据(例如平均值、平均差分、标准差、均值漂移值等等),将统计数据作为背景的方法。OpenCv中并未实现简单的背景统计模型,不过在《学习OpenCv》中对其中的平均背景统计模型有很详细的介绍。在模仿该算法的基础上,我实现了一系列的背景统计模型,包括:平均背景、均值漂移、标准差和标准协方差。对这些统计概念我其实不明白,在维基百科上看了好半天 -_-
    调用背景统计模型很简单,只需4步而已:

    //(1)初始化对象  
    BackgroundStatModelBase<Bgr> bgModel = new BackgroundStatModelBase<Bgr>(BackgroundStatModelType.AccAvg);  
    //(2)更新一段时间的背景图像,视情况反复调用(2)  
    bgModel.Update(image);  
    //(3)设置当前帧  
    bgModel.CurrentFrame = currentFrame;  
    //(4)得到背景或者前景  
    Image<Gray,Byte> imageForeground = bgModel.ForegroundMask; 


    背景统计模型的实现代码如下:


    /* 
    背景统计模型 
    作者:王先荣 
    时间:2010年2月19日 
    */  
    using System;  
    using System.Collections.Generic;  
    using System.Linq;  
    using System.Text;  
    using System.Drawing;  
    using System.Diagnostics;  
    using System.Runtime.InteropServices;  
    using Emgu.CV;  
    using Emgu.CV.CvEnum;  
    using Emgu.CV.Structure;  
    using Emgu.CV.UI;  
    using Emgu.CV.VideoSurveillance;  
      
    namespace ImageProcessLearn  
    {  
        //背景模型接口,在IBGFGDetector接口的基础上增加了一个CurrentFrame属性  
        public interface IBackgroundStatModel<TColor> : IDisposable  
            where TColor : struct, IColor  
        {  
            /// <summary>  
            /// 获取前景  
            /// </summary>  
            Image<Gray, byte> BackgroundMask { get; }  
      
            /// <summary>  
            /// 获取背景  
            /// </summary>  
            Image<Gray, byte> ForegroundMask { get; }  
      
            /// <summary>  
            /// 更新背景模型  
            /// </summary>  
            /// <param name="image"></param>  
            void Update(Image<TColor, byte> image);  
      
            /// <summary>  
            /// 计算统计数据  
            /// </summary>  
            void CalcStatData();  
      
            /// <summary>  
            /// 获取或者设置当前帧  
            /// </summary>  
            Image<TColor, Byte> CurrentFrame  
            {  
                get;  
                set;  
            }  
        }  
      
        /// <summary>  
        /// 使用帧差的方式来建立背景模型  
        /// </summary>  
        /// <typeparam name="TColor"></typeparam>  
        public class BackgroundStatModelFrameDiff<TColor> : IBackgroundStatModel<TColor>  
            where TColor : struct, IColor  
        {  
            //成员  
            private Image<TColor, Byte> imageBackgroundModel;   //背景模型图像  
            private Image<TColor, Byte> currentFrame;           //当前帧  
            private double threshold;                           //计算前景时所用的阀值,如果当前帧和背景的差别大于阀值,则被认为是前景  
            private Image<Gray, Byte> backgroundMask;           //计算得到的背景图像  
      
            /// <summary>  
            /// 构造函数  
            /// </summary>  
            /// <param name="image">用于背景统计模型的背景</param>  
            public BackgroundStatModelFrameDiff(Image<TColor, Byte> image)  
            {  
                imageBackgroundModel = image;  
                currentFrame = null;  
                threshold = 15d;  
                backgroundMask = null;  
            }  
      
            public BackgroundStatModelFrameDiff()  
                : this(null)  
            {  
            }  
      
            /// <summary>  
            /// 设置或者获取计算前景时所用的阀值;如果阀值为0,则使用自适应的阀值  
            /// </summary>  
            public double Threshold  
            {  
                get  
                {  
                    return threshold;  
                }  
                set  
                {  
                    threshold = value >= 0 ? value : 15d;  
                }  
            }  
      
            /// <summary>  
            /// 更新背景模型  
            /// </summary>  
            /// <param name="image"></param>  
            public void Update(Image<TColor, Byte> image)  
            {  
                imageBackgroundModel = image;  
            }  
      
            /// <summary>  
            /// 获取或者设置当前帧  
            /// </summary>  
            public Image<TColor, Byte> CurrentFrame  
            {  
                get  
                {  
                    return currentFrame;  
                }  
                set  
                {  
                    currentFrame = value;  
                    CalcBackgroundMask();  
                }  
            }  
      
            /// <summary>  
            /// 计算统计数据  
            /// </summary>  
            public void CalcStatData()  
            {  
            }  
      
            /// <summary>  
            /// 计算背景  
            /// </summary>  
            private void CalcBackgroundMask()  
            {  
                if (imageBackgroundModel == null || currentFrame == null || imageBackgroundModel.Size != currentFrame.Size)  
                    throw new ArgumentException("在计算背景时发现参数错误。可能是:背景模型图像为空,当前帧为空,或者背景模型图像和当前帧的尺寸不一致。");  
                if (backgroundMask == null)  
                    backgroundMask = new Image<Gray, byte>(imageBackgroundModel.Size);  
                if (threshold == 0d)  
                    //如果阀值为0,使用OpenCv中的自适应动态背景检测  
                    OpenCvInvoke.cvChangeDetection(imageBackgroundModel.Ptr, currentFrame.Ptr, backgroundMask.Ptr);  
                else  
                {  
                    //如果设置了阀值,使用帧差  
                    Image<TColor, Byte> imageTemp = imageBackgroundModel.AbsDiff(currentFrame);  
                    Image<Gray, Byte>[] images = imageTemp.Split();  
                    backgroundMask.SetValue(0d);  
                    foreach (Image<Gray, Byte> image in images)  
                        backgroundMask._Or(image.ThresholdBinary(new Gray(threshold), new Gray(255d)));  
                }  
                backgroundMask._Not();  
            }  
      
            /// <summary>  
            /// 获取背景  
            /// </summary>  
            public Image<Gray, Byte> BackgroundMask  
            {  
                get  
                {  
                    return backgroundMask;  
                }  
            }  
      
            /// <summary>  
            /// 获取前景  
            /// </summary>  
            public Image<Gray, Byte> ForegroundMask  
            {  
                get  
                {  
                    return backgroundMask.Not();  
                }  
            }  
      
            /// <summary>  
            /// 释放资源  
            /// </summary>  
            public void Dispose()  
            {  
                if (backgroundMask != null)  
                    backgroundMask.Dispose();  
            }  
        }  
      
        /// <summary>  
        /// 使用平均背景来建立背景模型  
        /// </summary>  
        /// <typeparam name="TColor"></typeparam>  
        public class BackgroundStatModelAccAvg<TColor> : IBackgroundStatModel<TColor>  
            where TColor : struct, IColor  
        {  
            //成员  
            private Image<TColor, Single> imageAccSum;          //累计图像  
            private Image<TColor, Single> imageAccDiff;         //累计差值图像  
            private int frameCount;                             //已经累计的背景帧数  
            private Image<TColor, Single> previousFrame;        //在背景建模时使用的前一帧图像  
            private Image<TColor, Byte> currentFrame;           //当前帧图像  
            private double scale;                               //计算背景时所使用的缩放系数,大于平均值*scale倍数的像素认为是前景  
            private Image<Gray, Byte> backgroundMask;           //计算得到的背景图像  
            private Image<TColor, Single> imageTemp;            //临时图像  
            private bool isStatDataReady;                       //是否已经准备好统计数据  
            private Image<Gray, Single>[] imagesHi;             //背景模型中各通道的最大值图像  
            private Image<Gray, Single>[] imagesLow;            //背景模型中各通道的最小值图像  
      
            /// <summary>  
            /// 构造函数  
            /// </summary>  
            public BackgroundStatModelAccAvg()  
            {  
                imageAccSum = null;  
                imageAccDiff = null;  
                frameCount = 0;  
                previousFrame = null;  
                currentFrame = null;  
                scale = 6d;  
                backgroundMask = null;  
                isStatDataReady = false;  
                imagesHi = null;  
                imagesLow = null;  
            }  
      
            /// <summary>  
            /// 设置或者获取计算前景时所用的阀值  
            /// </summary>  
            public double Scale  
            {  
                get  
                {  
                    return scale;  
                }  
                set  
                {  
                    scale = value > 0 ? value : 6d;  
                }  
            }  
      
            /// <summary>  
            /// 更新背景模型  
            /// </summary>  
            /// <param name="image"></param>  
            public void Update(Image<TColor, Byte> image)  
            {  
                if (frameCount==0)  
                {  
                    imageAccSum = new Image<TColor, Single>(image.Size);  
                    imageAccSum.SetValue(0d);  
                    imageAccDiff = new Image<TColor, float>(image.Size);  
                    imageAccDiff.SetValue(0d);  
                }  
                imageTemp = image.ConvertScale<Single>(1d, 0d); //将图像转换成浮点型  
                imageAccSum.Acc(imageTemp);  
                if (previousFrame != null)  
                    imageAccDiff.Acc(imageTemp.AbsDiff(previousFrame));  
                previousFrame = imageTemp.Copy();  
                frameCount++;  
            }  
      
            /// <summary>  
            /// 获取或者设置当前帧  
            /// </summary>  
            public Image<TColor, Byte> CurrentFrame  
            {  
                get  
                {  
                    return currentFrame;  
                }  
                set  
                {  
                    currentFrame = value;  
                    CalcBackgroundMask();  
                }  
            }  
      
            /// <summary>  
            /// 计算统计数据  
            /// </summary>  
            public void CalcStatData()  
            {  
                //计算出最高及最低阀值图像  
                Image<TColor, Single> imageAvg = imageAccSum.ConvertScale<Single>(1d / frameCount, 0d);  
                Image<TColor, Single> imageAvgDiff = imageAccDiff.ConvertScale<Single>(1d / frameCount, 1d);    //将平均值加1,为了确保总是存在差异  
                Image<TColor, Single> imageHi = imageAvg.Add(imageAvgDiff.ConvertScale<Single>(scale, 0d));  
                Image<TColor, Single> imageLow = imageAvg.Sub(imageAvgDiff.ConvertScale<Single>(scale, 0d));  
                imagesHi = imageHi.Split();  
                imagesLow = imageLow.Split();  
                isStatDataReady = true;  
                //释放资源  
                imageAvg.Dispose();  
                imageAvgDiff.Dispose();  
                imageHi.Dispose();  
                imageLow.Dispose();  
            }  
      
            /// <summary>  
            /// 计算背景  
            /// </summary>  
            private void CalcBackgroundMask()  
            {  
                if (imageAccSum == null || imageAccDiff == null || imageAccSum.Size != currentFrame.Size)  
                    throw new ArgumentException("在计算背景时发生参数错误。可能是:还没有建立背景模型;或者当前帧的尺寸与背景尺寸不一致。");  
                if (!isStatDataReady)  
                    CalcStatData();  
                imageTemp = currentFrame.ConvertScale<Single>(1d, 0d);  
                Image<Gray, Single>[] images = imageTemp.Split();  
                //计算背景图像  
                if (backgroundMask == null)  
                    backgroundMask = new Image<Gray, byte>(currentFrame.Size);  
                backgroundMask.SetZero();  
                for (int i = 0; i < currentFrame.NumberOfChannels; i++)  
                    backgroundMask._Or(images[i].InRange(imagesLow[i], imagesHi[i]));  
                //释放资源  
                for (int i = 0; i < images.Length; i++)  
                    images[i].Dispose();  
            }  
      
            /// <summary>  
            /// 获取背景  
            /// </summary>  
            public Image<Gray, Byte> BackgroundMask  
            {  
                get  
                {  
                    return backgroundMask;  
                }  
            }  
      
            /// <summary>  
            /// 获取前景  
            /// </summary>  
            public Image<Gray, Byte> ForegroundMask  
            {  
                get  
                {  
                    return backgroundMask.Not();  
                }  
            }  
      
            /// <summary>  
            /// 释放资源  
            /// </summary>  
            public void Dispose()  
            {  
                if (imageAccSum != null)  
                    imageAccSum.Dispose();  
                if (imageAccDiff != null)  
                    imageAccDiff.Dispose();  
                if (previousFrame != null)  
                    previousFrame.Dispose();  
                if (currentFrame != null)  
                    currentFrame.Dispose();  
                if (backgroundMask != null)  
                    backgroundMask.Dispose();  
                if (isStatDataReady)  
                {  
                    for (int i = 0; i < imagesHi.Length; i++)  
                    {  
                        imagesHi[i].Dispose();  
                        imagesLow[i].Dispose();  
                    }  
                }  
            }  
        }  
      
        /// <summary>  
        /// 使用均值漂移来建立背景模型  
        /// </summary>  
        /// <typeparam name="TColor"></typeparam>  
        public class BackgroundStatModelRunningAvg<TColor> : IBackgroundStatModel<TColor>  
            where TColor : struct, IColor  
        {  
            //成员  
            private Image<TColor, Single> imageAcc;             //累计图像  
            private Image<TColor, Single> imageAccDiff;         //累计差值图像  
            private int frameCount;                             //已经累计的背景帧数  
            private Image<TColor, Single> previousFrame;        //在背景建模时使用的前一帧图像  
            private Image<TColor, Byte> currentFrame;           //当前帧图像  
            private double scale;                               //计算背景时所使用的缩放系数,大于平均值*scale倍数的像素认为是前景  
            private double alpha;                               //计算均值漂移时使用的权值  
            private Image<Gray, Byte> backgroundMask;           //计算得到的背景图像  
            private Image<TColor, Single> imageTemp;            //临时图像  
            private bool isStatDataReady;                       //是否已经准备好统计数据  
            private Image<Gray, Single>[] imagesHi;             //背景模型中各通道的最大值图像  
            private Image<Gray, Single>[] imagesLow;            //背景模型中各通道的最小值图像  
      
            /// <summary>  
            /// 构造函数  
            /// </summary>  
            public BackgroundStatModelRunningAvg()  
            {  
                imageAcc = null;  
                imageAccDiff = null;  
                frameCount = 0;  
                previousFrame = null;  
                currentFrame = null;  
                scale = 6d;  
                alpha = 0.5d;  
                backgroundMask = null;  
                isStatDataReady = false;  
                imagesHi = null;  
                imagesLow = null;  
            }  
      
            /// <summary>  
            /// 设置或者获取计算前景时所用的阀值  
            /// </summary>  
            public double Scale  
            {  
                get  
                {  
                    return scale;  
                }  
                set  
                {  
                    scale = value > 0 ? value : 6d;  
                }  
            }  
      
            /// <summary>  
            /// 设置或者获取计算均值漂移是使用的权值  
            /// </summary>  
            public double Alpha  
            {  
                get  
                {  
                    return alpha;  
                }  
                set  
                {  
                    alpha = value > 0 && value < 1 ? value : 0.5d;  
                }  
            }  
      
            /// <summary>  
            /// 更新背景模型  
            /// </summary>  
            /// <param name="image"></param>  
            public void Update(Image<TColor, Byte> image)  
            {  
                imageTemp = image.ConvertScale<Single>(1d, 0d); //将图像转换成浮点型  
                if (imageAcc == null)  
                {  
                    imageAcc = imageTemp.Copy();  
                }  
                else  
                    imageAcc.RunningAvg(imageTemp, alpha);  
                if (previousFrame != null)  
                {  
                    if (imageAccDiff == null)  
                        imageAccDiff = imageTemp.AbsDiff(previousFrame);  
                    else  
                        imageAccDiff.RunningAvg(imageTemp.AbsDiff(previousFrame), alpha);  
                }  
                previousFrame = imageTemp.Copy();  
                frameCount++;  
            }  
      
            /// <summary>  
            /// 获取或者设置当前帧  
            /// </summary>  
            public Image<TColor, Byte> CurrentFrame  
            {  
                get  
                {  
                    return currentFrame;  
                }  
                set  
                {  
                    currentFrame = value;  
                    CalcBackgroundMask();  
                }  
            }  
      
            /// <summary>  
            /// 计算统计数据  
            /// </summary>  
            public void CalcStatData()  
            {  
                //计算出最高及最低阀值图像  
                Image<TColor, Single> imageHi = imageAcc.Add(imageAccDiff.ConvertScale<Single>(scale, 0d));  
                Image<TColor, Single> imageLow = imageAcc.Sub(imageAccDiff.ConvertScale<Single>(scale, 0d));  
                imagesHi = imageHi.Split();  
                imagesLow = imageLow.Split();  
                isStatDataReady = true;  
                //释放资源  
                imageHi.Dispose();  
                imageLow.Dispose();  
            }  
      
            /// <summary>  
            /// 计算背景  
            /// </summary>  
            private void CalcBackgroundMask()  
            {  
                if (imageAcc == null || imageAccDiff == null || imageAcc.Size != currentFrame.Size)  
                    throw new ArgumentException("在计算背景时发生参数错误。可能是:还没有建立背景模型;或者当前帧的尺寸与背景尺寸不一致。");  
                if (!isStatDataReady)  
                    CalcStatData();  
                imageTemp = currentFrame.ConvertScale<Single>(1d, 0d);  
                Image<Gray, Single>[] images = imageTemp.Split();  
                //计算背景图像  
                if (backgroundMask == null)  
                    backgroundMask = new Image<Gray, byte>(currentFrame.Size);  
                backgroundMask.SetZero();  
                for (int i = 0; i < currentFrame.NumberOfChannels; i++)  
                    backgroundMask._Or(images[i].InRange(imagesLow[i], imagesHi[i]));  
                //释放资源  
                for (int i = 0; i < images.Length; i++)  
                    images[i].Dispose();  
            }  
      
            /// <summary>  
            /// 获取背景  
            /// </summary>  
            public Image<Gray, Byte> BackgroundMask  
            {  
                get  
                {  
                    return backgroundMask;  
                }  
            }  
      
            /// <summary>  
            /// 获取前景  
            /// </summary>  
            public Image<Gray, Byte> ForegroundMask  
            {  
                get  
                {  
                    return backgroundMask.Not();  
                }  
            }  
      
            /// <summary>  
            /// 释放资源  
            /// </summary>  
            public void Dispose()  
            {  
                if (imageAcc != null)  
                    imageAcc.Dispose();  
                if (imageAccDiff != null)  
                    imageAccDiff.Dispose();  
                if (previousFrame != null)  
                    previousFrame.Dispose();  
                if (currentFrame != null)  
                    currentFrame.Dispose();  
                if (backgroundMask != null)  
                    backgroundMask.Dispose();  
                if (isStatDataReady)  
                {  
                    for (int i = 0; i < imagesHi.Length; i++)  
                    {  
                        imagesHi[i].Dispose();  
                        imagesLow[i].Dispose();  
                    }  
                }  
            }  
        }  
      
        /// <summary>  
        /// 使用标准方差来建立背景模型  
        /// </summary>  
        /// <typeparam name="TColor"></typeparam>  
        public class BackgroundStatModelSquareAcc<TColor> : IBackgroundStatModel<TColor>  
            where TColor : struct, IColor  
        {  
            //成员  
            private Image<TColor, Single> imageAccSum;          //累计图像  
            private Image<TColor, Single> imageAccSquare;       //累计平方图像  
            private int frameCount;                             //已经累计的背景帧数  
            private Image<TColor, Single> previousFrame;        //在背景建模时使用的前一帧图像  
            private Image<TColor, Byte> currentFrame;           //当前帧图像  
            private double scale;                               //计算背景时所使用的缩放系数,大于平均值*scale倍数的像素认为是前景  
            private Image<Gray, Byte> backgroundMask;           //计算得到的背景图像  
            private Image<TColor, Single> imageTemp;            //临时图像  
            private bool isStatDataReady;                       //是否已经准备好统计数据  
            private Image<Gray, Single>[] imagesHi;             //背景模型中各通道的最大值图像  
            private Image<Gray, Single>[] imagesLow;            //背景模型中各通道的最小值图像  
      
            /// <summary>  
            /// 构造函数  
            /// </summary>  
            public BackgroundStatModelSquareAcc()  
            {  
                imageAccSum = null;  
                imageAccSquare = null;  
                frameCount = 0;  
                previousFrame = null;  
                currentFrame = null;  
                scale = 6d;  
                backgroundMask = null;  
                isStatDataReady = false;  
                imagesHi = null;  
                imagesLow = null;  
            }  
      
            /// <summary>  
            /// 设置或者获取计算前景时所用的阀值  
            /// </summary>  
            public double Scale  
            {  
                get  
                {  
                    return scale;  
                }  
                set  
                {  
                    scale = value > 0 ? value : 6d;  
                }  
            }  
      
            /// <summary>  
            /// 更新背景模型  
            /// </summary>  
            /// <param name="image"></param>  
            public void Update(Image<TColor, Byte> image)  
            {  
                if (frameCount == 0)  
                {  
                    imageAccSum = new Image<TColor, Single>(image.Size);  
                    imageAccSum.SetZero();  
                    imageAccSquare = new Image<TColor, float>(image.Size);  
                    imageAccSquare.SetZero();  
                }  
                imageTemp = image.ConvertScale<Single>(1d, 0d); //将图像转换成浮点型  
                imageAccSum.Acc(imageTemp);  
                CvInvoke.cvSquareAcc(imageTemp.Ptr, imageAccSquare.Ptr, IntPtr.Zero);  
                previousFrame = imageTemp.Copy();  
                frameCount++;  
            }  
      
            /// <summary>  
            /// 获取或者设置当前帧  
            /// </summary>  
            public Image<TColor, Byte> CurrentFrame  
            {  
                get  
                {  
                    return currentFrame;  
                }  
                set  
                {  
                    currentFrame = value;  
                    CalcBackgroundMask();  
                }  
            }  
      
            /// <summary>  
            /// 计算统计数据  
            /// </summary>  
            public void CalcStatData()  
            {  
                //计算出标准差、最高及最低阀值图像  
                Image<TColor, Single> imageAvg = imageAccSum.ConvertScale<Single>(1d / frameCount, 0d);  
                Image<TColor, Single> imageSd = imageAccSquare.ConvertScale<Single>(1d / frameCount, 0d);  
                imageSd.Sub(imageAvg.Pow(2d));  
                imageSd = imageSd.Pow(0.5d);  
                Image<TColor, Single> imageHi = imageAvg.Add(imageSd.ConvertScale<Single>(scale, 0d));  
                Image<TColor, Single> imageLow = imageAvg.Sub(imageSd.ConvertScale<Single>(scale, 0d));  
                imagesHi = imageHi.Split();  
                imagesLow = imageLow.Split();  
                isStatDataReady = true;  
                //释放资源  
                imageAvg.Dispose();  
                imageSd.Dispose();  
                imageHi.Dispose();  
                imageLow.Dispose();  
            }  
      
            /// <summary>  
            /// 计算背景  
            /// </summary>  
            private void CalcBackgroundMask()  
            {  
                if (imageAccSum == null || imageAccSquare == null || imageAccSum.Size != currentFrame.Size)  
                    throw new ArgumentException("在计算背景时发生参数错误。可能是:还没有建立背景模型;或者当前帧的尺寸与背景尺寸不一致。");  
                if (!isStatDataReady)  
                    CalcStatData();  
                imageTemp = currentFrame.ConvertScale<Single>(1d, 0d);  
                Image<Gray, Single>[] images = imageTemp.Split();  
                //计算背景图像  
                if (backgroundMask == null)  
                    backgroundMask = new Image<Gray, byte>(currentFrame.Size);  
                backgroundMask.SetZero();  
                for (int i = 0; i < currentFrame.NumberOfChannels; i++)  
                    backgroundMask._Or(images[i].InRange(imagesLow[i], imagesHi[i]));  
                //释放资源  
                for (int i = 0; i < images.Length; i++)  
                    images[i].Dispose();  
            }  
      
            /// <summary>  
            /// 获取背景  
            /// </summary>  
            public Image<Gray, Byte> BackgroundMask  
            {  
                get  
                {  
                    return backgroundMask;  
                }  
            }  
      
            /// <summary>  
            /// 获取前景  
            /// </summary>  
            public Image<Gray, Byte> ForegroundMask  
            {  
                get  
                {  
                    return backgroundMask.Not();  
                }  
            }  
      
            /// <summary>  
            /// 释放资源  
            /// </summary>  
            public void Dispose()  
            {  
                if (imageAccSum != null)  
                    imageAccSum.Dispose();  
                if (imageAccSquare != null)  
                    imageAccSquare.Dispose();  
                if (previousFrame != null)  
                    previousFrame.Dispose();  
                if (currentFrame != null)  
                    currentFrame.Dispose();  
                if (backgroundMask != null)  
                    backgroundMask.Dispose();  
                if (isStatDataReady)  
                {  
                    for (int i = 0; i < imagesHi.Length; i++)  
                    {  
                        imagesHi[i].Dispose();  
                        imagesLow[i].Dispose();  
                    }  
                }  
            }  
        }  
      
        /// <summary>  
        /// 使用标准协方差来建立背景模型  
        /// </summary>  
        /// <typeparam name="TColor"></typeparam>  
        public class BackgroundStatModelMultiplyAcc<TColor> : IBackgroundStatModel<TColor>  
            where TColor : struct, IColor  
        {  
            //成员  
            private Image<TColor, Single> imageAccSum;          //累计图像  
            private Image<TColor, Single> imageAccMultiply;     //累计平方图像  
            private int frameCount;                             //已经累计的背景帧数  
            private Image<TColor, Single> previousFrame;        //在背景建模时使用的前一帧图像  
            private Image<TColor, Byte> currentFrame;           //当前帧图像  
            private double scale;                               //计算背景时所使用的缩放系数,大于平均值*scale倍数的像素认为是前景  
            private Image<Gray, Byte> backgroundMask;           //计算得到的背景图像  
            private Image<TColor, Single> imageTemp;            //临时图像  
            private bool isStatDataReady;                       //是否已经准备好统计数据  
            private Image<Gray, Single>[] imagesHi;             //背景模型中各通道的最大值图像  
            private Image<Gray, Single>[] imagesLow;            //背景模型中各通道的最小值图像  
      
            /// <summary>  
            /// 构造函数  
            /// </summary>  
            public BackgroundStatModelMultiplyAcc()  
            {  
                imageAccSum = null;  
                imageAccMultiply = null;  
                frameCount = 0;  
                previousFrame = null;  
                currentFrame = null;  
                scale = 6d;  
                backgroundMask = null;  
                isStatDataReady = false;  
                imagesHi = null;  
                imagesLow = null;  
            }  
      
            /// <summary>  
            /// 设置或者获取计算前景时所用的阀值  
            /// </summary>  
            public double Scale  
            {  
                get  
                {  
                    return scale;  
                }  
                set  
                {  
                    scale = value > 0 ? value : 6d;  
                }  
            }  
      
            /// <summary>  
            /// 更新背景模型  
            /// </summary>  
            /// <param name="image"></param>  
            public void Update(Image<TColor, Byte> image)  
            {  
                if (frameCount == 0)  
                {  
                    imageAccSum = new Image<TColor, Single>(image.Size);  
                    imageAccSum.SetZero();  
                    imageAccMultiply = new Image<TColor, float>(image.Size);  
                    imageAccMultiply.SetZero();  
                }  
                imageTemp = image.ConvertScale<Single>(1d, 0d); //将图像转换成浮点型  
                imageAccSum.Acc(imageTemp);  
                if (previousFrame != null)  
                    CvInvoke.cvMultiplyAcc(previousFrame.Ptr, imageTemp.Ptr, imageAccMultiply.Ptr, IntPtr.Zero);  
                previousFrame = imageTemp.Copy();  
                frameCount++;  
            }  
      
            /// <summary>  
            /// 获取或者设置当前帧  
            /// </summary>  
            public Image<TColor, Byte> CurrentFrame  
            {  
                get  
                {  
                    return currentFrame;  
                }  
                set  
                {  
                    currentFrame = value;  
                    CalcBackgroundMask();  
                }  
            }  
      
            /// <summary>  
            /// 计算统计数据  
            /// </summary>  
            public void CalcStatData()  
            {  
                //计算出标准协方差、最高及最低阀值图像  
                Image<TColor, Single> imageAvg = imageAccSum.ConvertScale<Single>(1d / frameCount, 0d);  
                Image<TColor, Single> imageScov = imageAccMultiply.ConvertScale<Single>(1d / frameCount, 0d);  
                imageScov.Sub(imageAvg.Pow(2d));  
                imageScov = imageScov.Pow(0.5d);  
                Image<TColor, Single> imageHi = imageAvg.Add(imageScov.ConvertScale<Single>(scale, 0d));  
                Image<TColor, Single> imageLow = imageAvg.Sub(imageScov.ConvertScale<Single>(scale, 0d));  
                imagesHi = imageHi.Split();  
                imagesLow = imageLow.Split();  
                isStatDataReady = true;  
                //释放资源  
                imageAvg.Dispose();  
                imageScov.Dispose();  
                imageHi.Dispose();  
                imageLow.Dispose();  
            }  
      
            /// <summary>  
            /// 计算背景  
            /// </summary>  
            private void CalcBackgroundMask()  
            {  
                if (imageAccSum == null || imageAccMultiply == null || imageAccSum.Size != currentFrame.Size)  
                    throw new ArgumentException("在计算背景时发生参数错误。可能是:还没有建立背景模型;或者当前帧的尺寸与背景尺寸不一致。");  
                if (!isStatDataReady)  
                    CalcStatData();  
                imageTemp = currentFrame.ConvertScale<Single>(1d, 0d);  
                Image<Gray, Single>[] images = imageTemp.Split();  
                //计算背景图像  
                if (backgroundMask == null)  
                    backgroundMask = new Image<Gray, byte>(currentFrame.Size);  
                backgroundMask.SetZero();  
                for (int i = 0; i < currentFrame.NumberOfChannels; i++)  
                    backgroundMask._Or(images[i].InRange(imagesLow[i], imagesHi[i]));  
                //释放资源  
                for (int i = 0; i < images.Length; i++)  
                    images[i].Dispose();  
            }  
      
            /// <summary>  
            /// 获取背景  
            /// </summary>  
            public Image<Gray, Byte> BackgroundMask  
            {  
                get  
                {  
                    return backgroundMask;  
                }  
            }  
      
            /// <summary>  
            /// 获取前景  
            /// </summary>  
            public Image<Gray, Byte> ForegroundMask  
            {  
                get  
                {  
                    return backgroundMask.Not();  
                }  
            }  
      
            /// <summary>  
            /// 释放资源  
            /// </summary>  
            public void Dispose()  
            {  
                if (imageAccSum != null)  
                    imageAccSum.Dispose();  
                if (imageAccMultiply != null)  
                    imageAccMultiply.Dispose();  
                if (previousFrame != null)  
                    previousFrame.Dispose();  
                if (currentFrame != null)  
                    currentFrame.Dispose();  
                if (backgroundMask != null)  
                    backgroundMask.Dispose();  
                if (isStatDataReady)  
                {  
                    for (int i = 0; i < imagesHi.Length; i++)  
                    {  
                        imagesHi[i].Dispose();  
                        imagesLow[i].Dispose();  
                    }  
                }  
            }  
        }  
      
        /// <summary>  
        /// 背景统计模型  
        /// </summary>  
        public class BackgroundStatModelBase<TColor> : IBackgroundStatModel<TColor>  
            where TColor : struct, IColor  
        {  
            //成员变量  
            IBackgroundStatModel<TColor> bgModel;  
            BackgroundStatModelType type;  
      
            /// <summary>  
            /// 构造函数  
            /// </summary>  
            /// <param name="type">背景模型类型</param>  
            public BackgroundStatModelBase(BackgroundStatModelType type)  
            {  
                this.type = type;  
                switch (type)  
                {  
                    case BackgroundStatModelType.FrameDiff:  
                        bgModel = new BackgroundStatModelFrameDiff<TColor>();  
                        break;  
                    case BackgroundStatModelType.AccAvg:  
                        bgModel = new BackgroundStatModelAccAvg<TColor>();  
                        break;  
                    case BackgroundStatModelType.RunningAvg:  
                        bgModel = new BackgroundStatModelRunningAvg<TColor>();  
                        break;  
                    case BackgroundStatModelType.SquareAcc:  
                        bgModel = new BackgroundStatModelSquareAcc<TColor>();  
                        break;  
                    case BackgroundStatModelType.MultiplyAcc:  
                        bgModel = new BackgroundStatModelMultiplyAcc<TColor>();  
                        break;  
                    default:  
                        throw new ArgumentException("不存在的背景模型", "type");  
                }  
            }  
      
            /// <summary>  
            /// 获取背景模型类型  
            /// </summary>  
            public BackgroundStatModelType BackgroundStatModelType  
            {  
                get  
                {  
                    return type;  
                }  
            }  
      
            /// <summary>  
            /// 更新背景模型  
            /// </summary>  
            /// <param name="image"></param>  
            public void Update(Image<TColor, Byte> image)  
            {  
                bgModel.Update(image);  
            }  
      
            /// <summary>  
            /// 计算统计数据  
            /// </summary>  
            public void CalcStatData()  
            {  
                bgModel.CalcStatData();  
            }  
      
            /// <summary>  
            /// 设置或者获取当前帧  
            /// </summary>  
            public Image<TColor, Byte> CurrentFrame  
            {  
                get  
                {  
                    return bgModel.CurrentFrame;  
                }  
                set  
                {  
                    bgModel.CurrentFrame = value;  
                }  
            }  
      
            /// <summary>  
            /// 获取背景  
            /// </summary>  
            public Image<Gray, Byte> BackgroundMask  
            {  
                get  
                {  
                    return bgModel.BackgroundMask;  
                }  
            }  
      
            /// <summary>  
            /// 获取前景  
            /// </summary>  
            public Image<Gray, Byte> ForegroundMask  
            {  
                get  
                {  
                    return bgModel.ForegroundMask;  
                }  
            }  
      
            /// <summary>  
            /// 释放资源  
            /// </summary>  
            public void Dispose()  
            {  
                if (bgModel != null)  
                    bgModel.Dispose();  
            }  
        }  
      
        /// <summary>  
        /// 背景模型类型  
        /// </summary>  
        public enum BackgroundStatModelType  
        {  
            FrameDiff,      //帧差  
            AccAvg,         //平均背景  
            RunningAvg,     //均值漂移  
            MultiplyAcc,    //计算协方差  
            SquareAcc       //计算方差  
        }  
    }  

    3.编码本背景模型
        编码本的基本思路是这样的:针对每个像素在时间轴上的变动,建立多个(或者一个)包容近期所有变化的Box(变动范围);在检测时,用当前像素与Box去比较,如果当前像素落在任何Box的范围内,则为背景。
        在OpenCv中已经实现了编码本背景模型,不过实现方式与《学习OpenCv》中提到的方式略有不同,主要有:(1)使用单向链表来容纳Code Element;(2)清除消极的Code Element时,并未重置t。OpenCv中的以下函数与编码本背景模型相关:
    cvCreateBGCodeBookModel  建立背景模型
    cvBGCodeBookUpdate       更新背景模型
    cvBGCodeBookClearStale   清除消极的Code Element
    cvBGCodeBookDiff         计算得到背景与前景(注意:该函数仅仅设置背景像素为0,而对前景像素未处理,因此在调用前需要将所有的像素先置为前景)
    cvReleaseBGCodeBookModel 释放资源
        在EmguCv中只实现了一部分编码本背景模型,在类BGCodeBookModel<TColor>中,可惜它把cvBGCodeBookDiff给搞忘记了 -_-

    下面的代码演示了如何使用编码本背景模型:

    //(1)初始化对象  
    if (rbCodeBook.Checked)  
    {  
        if (bgCodeBookModel != null)  
        {  
            bgCodeBookModel.Dispose();  
            bgCodeBookModel = null;  
        }  
        bgCodeBookModel = new BGCodeBookModel<Bgr>();  
    }  
    //(2)背景建模或者前景检测  
    bool stop = false;  
    while (!stop)  
    {  
        Image<Bgr, Byte> image = capture.QueryFrame().Clone();  //当前帧  
        bool isBgModeling, isFgDetecting;                       //是否正在建模,是否正在前景检测  
        lock (lockObject)  
        {  
            stop = !isVideoCapturing;  
            isBgModeling = isBackgroundModeling;  
            isFgDetecting = isForegroundDetecting;  
        }  
        //得到设置的参数  
        SettingParam param = (SettingParam)this.Invoke(new GetSettingParamDelegate(GetSettingParam));  
        //code book  
        if (param.ForegroundDetectType == ForegroundDetectType.CodeBook)  
        {  
            if (bgCodeBookModel != null)  
            {  
                //背景建模  
                if (isBgModeling)  
                {  
                    bgCodeBookModel.Update(image);  
                    //背景建模一段时间之后,清理陈旧的条目 (因为清理操作不会重置t,所以这里用求余数的办法来决定清理的时机)  
                    if (backgroundModelFrameCount % CodeBookClearPeriod == CodeBookClearPeriod - 1)  
                        bgCodeBookModel.ClearStale(CodeBookStaleThresh, Rectangle.Empty, null);  
                    backgroundModelFrameCount++;  
                    pbBackgroundModel.Image = bgCodeBookModel.BackgroundMask.Bitmap;  
                    //如果达到最大背景建模次数,停止背景建模  
                    if (param.MaxBackgroundModelFrameCount != 0 && backgroundModelFrameCount > param.MaxBackgroundModelFrameCount)  
                        this.Invoke(new NoParamAndReturnDelegate(StopBackgroundModel));  
                }  
                //前景检测  
                if (isFgDetecting)  
                {  
                    Image<Gray, Byte> imageFg = new Image<Gray, byte>(image.Size);  
                    imageFg.SetValue(255d);     //CodeBook在得出前景时,仅仅将背景像素置零,所以这里需要先将所有的像素都假设为前景  
                    CvInvoke.cvBGCodeBookDiff(bgCodeBookModel.Ptr, image.Ptr, imageFg.Ptr, Rectangle.Empty);  
                    pbBackgroundModel.Image = imageFg.Bitmap;  
                }  
            }  
        }  
        //更新视频图像  
        pbVideo.Image = image.Bitmap;  
    }  
    //(3)释放对象  
    if (bgCodeBookModel != null)  
    {  
        try  
        {  
            bgCodeBookModel.Dispose();  
        }  
        catch { }  
    }  
    
    4.高级背景统计模型
        在OpenCv还实现了两种高级的背景统计模型,它们为别是:(1)FGD——复杂背景下的前景物体检测(Foreground object detection from videos containing complex background);(2)MOG——高斯混合模型(Mixture Of Gauss)。包括以下函数:
    CvCreateFGDetectorBase  建立前景检测对象
    CvFGDetectorProcess     更新前景检测对象
    CvFGDetectorGetMask     获取前景
    CvFGDetectorRelease     释放资源
        EmguCv将其封装到类FGDetector<TColor>中。我个人觉得OpenCv在实现这个模型的时候做得不太好,因为它将背景建模和前景检测糅合到一起了,无论你是否愿意,在建模的过程中也会检测前景,而只希望前景检测的时候,同时也会建模。我比较喜欢将背景建模和前景检测进行分离的设计。
    
    调用的过程很简单,代码如下:
    [cpp] view plain copy print?
    //(1)创建对象  
    if (rbMog.Checked)  
    {  
        if (fgDetector != null)  
        {  
            fgDetector.Dispose();  
            fgDetector = null;  
        }  
        fgDetector = new FGDetector<Bgr>(FORGROUND_DETECTOR_TYPE.FGD);  
    }  
    else if (rbFgd.Checked)  
    {  
        if (fgDetector != null)  
        {  
            fgDetector.Dispose();  
            fgDetector = null;  
        }  
        fgDetector = new FGDetector<Bgr>(FORGROUND_DETECTOR_TYPE.MOG);  
    }  
    //背景建模及前景检测  
    bool stop = false;  
    while (!stop)  
    {  
        Image<Bgr, Byte> image = capture.QueryFrame().Clone();  //当前帧  
        bool isBgModeling, isFgDetecting;                       //是否正在建模,是否正在前景检测  
        lock (lockObject)  
        {  
            stop = !isVideoCapturing;  
            isBgModeling = isBackgroundModeling;  
            isFgDetecting = isForegroundDetecting;  
        }  
        //得到设置的参数  
        SettingParam param = (SettingParam)this.Invoke(new GetSettingParamDelegate(GetSettingParam));  
        if (param.ForegroundDetectType == ForegroundDetectType.Fgd || param.ForegroundDetectType == ForegroundDetectType.Mog)  
        {  
            if (fgDetector != null && (isBgModeling || isFgDetecting))  
            {  
                //背景建模  
                fgDetector.Update(image);  
                backgroundModelFrameCount++;  
                pbBackgroundModel.Image = fgDetector.BackgroundMask.Bitmap;  
                //如果达到最大背景建模次数,停止背景建模  
                if (param.MaxBackgroundModelFrameCount != 0 && backgroundModelFrameCount > param.MaxBackgroundModelFrameCount)  
                    this.Invoke(new NoParamAndReturnDelegate(StopBackgroundModel));  
                //前景检测  
                if (isFgDetecting)  
                {  
                    pbBackgroundModel.Image = fgDetector.ForgroundMask.Bitmap;  
                }  
            }  
        }  
        //更新视频图像  
        pbVideo.Image = image.Bitmap;  
    }  
    //(3)释放资源  
    if (fgDetector != null)  
    {  
        try  
        {  
            fgDetector.Dispose();  
        }  
        catch { }  
    }  
    前景检测
        在建立好背景模型之后,通过对当前图像及背景的某种比较,我们可以得出前景。在上面的介绍中,已经包含了对前景的代码,在此不再重复。一般情况下,得到的前景包含了很多噪声,为了消除噪声,我们可以对前景图像进行开运算及闭运算,然后再丢弃比较小的轮廓。
    
    本文的代码
    
    [cpp] view plain copy print?
    using System;  
    using System.Collections.Generic;  
    using System.ComponentModel;  
    using System.Data;  
    using System.Drawing;  
    using System.Linq;  
    using System.Text;  
    using System.Windows.Forms;  
    using System.Diagnostics;  
    using System.Runtime.InteropServices;  
    using System.Threading;  
    using Emgu.CV;  
    using Emgu.CV.CvEnum;  
    using Emgu.CV.Structure;  
    using Emgu.CV.UI;  
    using Emgu.CV.VideoSurveillance;  
      
    namespace ImageProcessLearn  
    {  
        public partial class FormForegroundDetect : Form  
        {  
            //成员变量  
            Capture capture = null;                         //视频捕获对象  
            Thread captureThread = null;                    //视频捕获线程  
            private bool isVideoCapturing = true;           //是否正在捕获视频  
            private bool isBackgroundModeling = false;      //是否正在背景建模  
            private int backgroundModelFrameCount = 0;      //已经建模的视频帧数  
            private bool isForegroundDetecting = false;     //是否正在进行前景检测  
            private object lockObject = new object();       //用于锁定的对象  
      
            //各种前景检测方法对应的对象  
            BGCodeBookModel<Bgr> bgCodeBookModel = null;    //编码本前景检测  
            private const int CodeBookClearPeriod = 40;     //编码本的清理周期,更新这么多次背景之后,清理掉很少使用的陈旧条目  
            private const int CodeBookStaleThresh = 20;     //在清理编码本时,使用的阀值(stale大于该阀值的条目将被删除)  
            FGDetector<Bgr> fgDetector = null;              //Mog或者Fgd检测  
            BackgroundStatModelFrameDiff<Bgr> bgModelFrameDiff = null;      //帧差  
            BackgroundStatModelAccAvg<Bgr> bgModelAccAvg = null;            //平均背景  
            BackgroundStatModelRunningAvg<Bgr> bgModelRunningAvg = null;    //均值漂移  
            BackgroundStatModelSquareAcc<Bgr> bgModelSquareAcc = null;      //标准方差  
            BackgroundStatModelMultiplyAcc<Bgr> bgModelMultiplyAcc = null;  //标准协方差  
      
      
            public FormForegroundDetect()  
            {  
                InitializeComponent();  
            }  
      
            //窗体加载时  
            private void FormForegroundDetect_Load(object sender, EventArgs e)  
            {  
                //设置Tooltip  
                toolTip.Active = true;  
                toolTip.SetToolTip(rbMog, "高斯混合模型(Mixture Of Gauss)");  
                toolTip.SetToolTip(rbFgd, "复杂背景下的前景物体检测(Foreground object detection from videos containing complex background)");  
                toolTip.SetToolTip(txtMaxBackgroundModelFrameCount, "在背景建模时,使用的最大帧数,超出该值之后,将自动停止背景建模。
    对于帧差,总是只捕捉当前帧作为背景。
    如果设为零,背景检测将不会自动停止。");  
                  
                //打开摄像头视频捕获线程  
                capture = new Capture(0);  
                captureThread = new Thread(new ParameterizedThreadStart(CaptureWithEmguCv));  
                captureThread.Start(null);  
            }  
      
            //窗体关闭前  
            private void FormForegroundDetect_FormClosing(object sender, FormClosingEventArgs e)  
            {  
                //终止视频捕获  
                isVideoCapturing = false;  
                if (captureThread != null)  
                    captureThread.Abort();  
                if (capture != null)  
                    capture.Dispose();  
                //释放对象  
                if (bgCodeBookModel != null)  
                {  
                    try  
                    {  
                        bgCodeBookModel.Dispose();  
                    }  
                    catch { }  
                }  
                if (fgDetector != null)  
                {  
                    try  
                    {  
                        fgDetector.Dispose();  
                    }  
                    catch { }  
                }  
                if (bgModelFrameDiff != null)  
                    bgModelFrameDiff.Dispose();  
                if (bgModelAccAvg != null)  
                    bgModelAccAvg.Dispose();  
                if (bgModelRunningAvg != null)  
                    bgModelRunningAvg.Dispose();  
                if (bgModelSquareAcc != null)  
                    bgModelSquareAcc.Dispose();  
                if (bgModelMultiplyAcc != null)  
                    bgModelMultiplyAcc.Dispose();  
            }  
      
            //EmguCv视频捕获  
            private void CaptureWithEmguCv(object objParam)  
            {  
                if (capture == null)  
                    return;  
                bool stop = false;  
                while (!stop)  
                {  
                    Image<Bgr, Byte> image = capture.QueryFrame().Clone();  //当前帧  
                    bool isBgModeling, isFgDetecting;                       //是否正在建模,是否正在前景检测  
                    lock (lockObject)  
                    {  
                        stop = !isVideoCapturing;  
                        isBgModeling = isBackgroundModeling;  
                        isFgDetecting = isForegroundDetecting;  
                    }  
                    //得到设置的参数  
                    SettingParam param = (SettingParam)this.Invoke(new GetSettingParamDelegate(GetSettingParam));  
                    //code book  
                    if (param.ForegroundDetectType == ForegroundDetectType.CodeBook)  
                    {  
                        if (bgCodeBookModel != null && (isBgModeling || isFgDetecting))  
                        {  
                            //背景建模  
                            if (isBgModeling)  
                            {  
                                bgCodeBookModel.Update(image);  
                                //背景建模一段时间之后,清理陈旧的条目  
                                if (backgroundModelFrameCount % CodeBookClearPeriod == CodeBookClearPeriod - 1)  
                                    bgCodeBookModel.ClearStale(CodeBookStaleThresh, Rectangle.Empty, null);  
                                backgroundModelFrameCount++;  
                                pbBackgroundModel.Image = bgCodeBookModel.BackgroundMask.Bitmap;  
                                //如果达到最大背景建模次数,停止背景建模  
                                if (param.MaxBackgroundModelFrameCount != 0 && backgroundModelFrameCount > param.MaxBackgroundModelFrameCount)  
                                    this.Invoke(new NoParamAndReturnDelegate(StopBackgroundModel));  
                            }  
                            //前景检测  
                            if (isFgDetecting)  
                            {  
                                Image<Gray, Byte> imageFg = new Image<Gray, byte>(image.Size);  
                                imageFg.SetValue(255d);     //CodeBook在得出前景时,仅仅将背景像素置零,所以这里需要先将所有的像素都假设为前景  
                                CvInvoke.cvBGCodeBookDiff(bgCodeBookModel.Ptr, image.Ptr, imageFg.Ptr, Rectangle.Empty);  
                                pbBackgroundModel.Image = imageFg.Bitmap;  
                            }  
                        }  
                    }  
                    //fgd or mog  
                    else if (param.ForegroundDetectType == ForegroundDetectType.Fgd || param.ForegroundDetectType == ForegroundDetectType.Mog)  
                    {  
                        if (fgDetector != null && (isBgModeling || isFgDetecting))  
                        {  
                            //背景建模  
                            fgDetector.Update(image);  
                            backgroundModelFrameCount++;  
                            pbBackgroundModel.Image = fgDetector.BackgroundMask.Bitmap;  
                            //如果达到最大背景建模次数,停止背景建模  
                            if (param.MaxBackgroundModelFrameCount != 0 && backgroundModelFrameCount > param.MaxBackgroundModelFrameCount)  
                                this.Invoke(new NoParamAndReturnDelegate(StopBackgroundModel));  
                            //前景检测  
                            if (isFgDetecting)  
                            {  
                                pbBackgroundModel.Image = fgDetector.ForgroundMask.Bitmap;  
                            }  
                        }  
                    }  
                    //帧差  
                    else if (param.ForegroundDetectType == ForegroundDetectType.FrameDiff)  
                    {  
                        if (bgModelFrameDiff != null)  
                        {  
                            //背景建模  
                            if (isBgModeling)  
                            {  
                                bgModelFrameDiff.Update(image);  
                                backgroundModelFrameCount++;  
                                this.Invoke(new NoParamAndReturnDelegate(StopBackgroundModel)); //对于帧差,只需要捕获当前帧作为背景即可  
                            }  
                            //前景检测  
                            if (isFgDetecting)  
                            {  
                                bgModelFrameDiff.Threshold = param.Threshold;  
                                bgModelFrameDiff.CurrentFrame = image;  
                                pbBackgroundModel.Image = bgModelFrameDiff.ForegroundMask.Bitmap;  
                            }  
                        }  
                    }  
                    //平均背景  
                    else if (param.ForegroundDetectType == ForegroundDetectType.AccAvg)  
                    {  
                        if (bgModelAccAvg!=null)  
                        {  
                            //背景建模  
                            if (isBgModeling)  
                            {  
                                bgModelAccAvg.Update(image);  
                                backgroundModelFrameCount++;  
                                //如果达到最大背景建模次数,停止背景建模  
                                if (param.MaxBackgroundModelFrameCount != 0 && backgroundModelFrameCount > param.MaxBackgroundModelFrameCount)  
                                    this.Invoke(new NoParamAndReturnDelegate(StopBackgroundModel));  
                            }  
                            //前景检测  
                            if (isFgDetecting)  
                            {  
                                bgModelAccAvg.CurrentFrame = image;  
                                pbBackgroundModel.Image = bgModelAccAvg.ForegroundMask.Bitmap;  
                            }  
                        }  
                    }  
                    //均值漂移  
                    else if (param.ForegroundDetectType == ForegroundDetectType.RunningAvg)  
                    {  
                        if (bgModelRunningAvg != null)  
                        {  
                            //背景建模  
                            if (isBgModeling)  
                            {  
                                bgModelRunningAvg.Update(image);  
                                backgroundModelFrameCount++;  
                                //如果达到最大背景建模次数,停止背景建模  
                                if (param.MaxBackgroundModelFrameCount != 0 && backgroundModelFrameCount > param.MaxBackgroundModelFrameCount)  
                                    this.Invoke(new NoParamAndReturnDelegate(StopBackgroundModel));  
                            }  
                            //前景检测  
                            if (isFgDetecting)  
                            {  
                                bgModelRunningAvg.CurrentFrame = image;  
                                pbBackgroundModel.Image = bgModelRunningAvg.ForegroundMask.Bitmap;  
                            }  
                        }  
                    }  
                    //计算方差  
                    else if (param.ForegroundDetectType == ForegroundDetectType.SquareAcc)  
                    {  
                        if (bgModelSquareAcc != null)  
                        {  
                            //背景建模  
                            if (isBgModeling)  
                            {  
                                bgModelSquareAcc.Update(image);  
                                backgroundModelFrameCount++;  
                                //如果达到最大背景建模次数,停止背景建模  
                                if (param.MaxBackgroundModelFrameCount != 0 && backgroundModelFrameCount > param.MaxBackgroundModelFrameCount)  
                                    this.Invoke(new NoParamAndReturnDelegate(StopBackgroundModel));  
                            }  
                            //前景检测  
                            if (isFgDetecting)  
                            {  
                                bgModelSquareAcc.CurrentFrame = image;  
                                pbBackgroundModel.Image = bgModelSquareAcc.ForegroundMask.Bitmap;  
                            }  
                        }  
                    }  
                    //协方差  
                    else if (param.ForegroundDetectType == ForegroundDetectType.MultiplyAcc)  
                    {  
                        if (bgModelMultiplyAcc != null)  
                        {  
                            //背景建模  
                            if (isBgModeling)  
                            {  
                                bgModelMultiplyAcc.Update(image);  
                                backgroundModelFrameCount++;  
                                //如果达到最大背景建模次数,停止背景建模  
                                if (param.MaxBackgroundModelFrameCount != 0 && backgroundModelFrameCount > param.MaxBackgroundModelFrameCount)  
                                    this.Invoke(new NoParamAndReturnDelegate(StopBackgroundModel));  
                            }  
                            //前景检测  
                            if (isFgDetecting)  
                            {  
                                bgModelMultiplyAcc.CurrentFrame = image;  
                                pbBackgroundModel.Image = bgModelMultiplyAcc.ForegroundMask.Bitmap;  
                            }  
                        }  
                    }  
                    //更新视频图像  
                    pbVideo.Image = image.Bitmap;  
                }  
            }  
      
            //用于在工作线程中更新结果的委托及方法  
            private delegate void AddResultDelegate(string result);  
            private void AddResultMethod(string result)  
            {  
                //txtResult.Text += result;  
            }  
      
            //用于在工作线程中获取设置参数的委托及方法  
            private delegate SettingParam GetSettingParamDelegate();  
            private SettingParam GetSettingParam()  
            {  
                ForegroundDetectType type = ForegroundDetectType.FrameDiff;  
                if (rbFrameDiff.Checked)  
                    type = ForegroundDetectType.FrameDiff;  
                else if (rbAccAvg.Checked)  
                    type = ForegroundDetectType.AccAvg;  
                else if (rbRunningAvg.Checked)  
                    type = ForegroundDetectType.RunningAvg;  
                else if (rbMultiplyAcc.Checked)  
                    type = ForegroundDetectType.MultiplyAcc;  
                else if (rbSquareAcc.Checked)  
                    type = ForegroundDetectType.SquareAcc;  
                else if (rbCodeBook.Checked)  
                    type = ForegroundDetectType.CodeBook;  
                else if (rbMog.Checked)  
                    type = ForegroundDetectType.Mog;  
                else  
                    type = ForegroundDetectType.Fgd;  
                int maxFrameCount = 0;  
                int.TryParse(txtMaxBackgroundModelFrameCount.Text, out maxFrameCount);  
                double threshold = 15d;  
                double.TryParse(txtThreshold.Text, out threshold);  
                if (threshold <= 0)  
                    threshold = 15d;  
                return new SettingParam(type, maxFrameCount, threshold);  
            }  
      
            //没有参数及返回值的委托  
            private delegate void NoParamAndReturnDelegate();  
      
            //开始背景建模  
            private void btnStartBackgroundModel_Click(object sender, EventArgs e)  
            {  
                if (rbCodeBook.Checked)  
                {  
                    if (bgCodeBookModel != null)  
                    {  
                        bgCodeBookModel.Dispose();  
                        bgCodeBookModel = null;  
                    }  
                    bgCodeBookModel = new BGCodeBookModel<Bgr>();  
                }  
                else if (rbMog.Checked)  
                {  
                    if (fgDetector != null)  
                    {  
                        fgDetector.Dispose();  
                        fgDetector = null;  
                    }  
                    fgDetector = new FGDetector<Bgr>(FORGROUND_DETECTOR_TYPE.FGD);  
                }  
                else if (rbFgd.Checked)  
                {  
                    if (fgDetector != null)  
                    {  
                        fgDetector.Dispose();  
                        fgDetector = null;  
                    }  
                    fgDetector = new FGDetector<Bgr>(FORGROUND_DETECTOR_TYPE.MOG);  
                }  
                else if (rbFrameDiff.Checked)  
                {  
                    if (bgModelFrameDiff != null)  
                    {  
                        bgModelFrameDiff.Dispose();  
                        bgModelFrameDiff = null;  
                    }  
                    bgModelFrameDiff = new BackgroundStatModelFrameDiff<Bgr>();  
                }  
                else if (rbAccAvg.Checked)  
                {  
                    if (bgModelAccAvg != null)  
                    {  
                        bgModelAccAvg.Dispose();  
                        bgModelAccAvg = null;  
                    }  
                    bgModelAccAvg = new BackgroundStatModelAccAvg<Bgr>();  
                }  
                else if (rbRunningAvg.Checked)  
                {  
                    if (bgModelRunningAvg != null)  
                    {  
                        bgModelRunningAvg.Dispose();  
                        bgModelRunningAvg = null;  
                    }  
                    bgModelRunningAvg = new BackgroundStatModelRunningAvg<Bgr>();  
                }  
                else if (rbSquareAcc.Checked)  
                {  
                    if (bgModelSquareAcc != null)  
                    {  
                        bgModelSquareAcc.Dispose();  
                        bgModelSquareAcc = null;  
                    }  
                    bgModelSquareAcc = new BackgroundStatModelSquareAcc<Bgr>();  
                }  
                else if (rbMultiplyAcc.Checked)  
                {  
                    if (bgModelMultiplyAcc != null)  
                    {  
                        bgModelMultiplyAcc.Dispose();  
                        bgModelMultiplyAcc = null;  
                    }  
                    bgModelMultiplyAcc = new BackgroundStatModelMultiplyAcc<Bgr>();  
                }  
                backgroundModelFrameCount = 0;  
                isBackgroundModeling = true;  
                btnStartBackgroundModel.Enabled = false;  
                btnStopBackgroundModel.Enabled = true;  
                btnStartForegroundDetect.Enabled = false;  
                btnStopForegroundDetect.Enabled = false;  
            }  
      
            //停止背景建模  
            private void btnStopBackgroundModel_Click(object sender, EventArgs e)  
            {  
                StopBackgroundModel();  
            }  
      
            //停止背景建模  
            private void StopBackgroundModel()  
            {  
                lock (lockObject)  
                {  
                    isBackgroundModeling = false;  
                }  
                btnStartBackgroundModel.Enabled = true;  
                btnStopBackgroundModel.Enabled = false;  
                btnStartForegroundDetect.Enabled = true;  
                btnStopForegroundDetect.Enabled = false;  
            }  
      
            //开始前景检测  
            private void btnStartForegroundDetect_Click(object sender, EventArgs e)  
            {  
                isForegroundDetecting = true;  
                btnStartBackgroundModel.Enabled = false;  
                btnStopBackgroundModel.Enabled = false;  
                btnStartForegroundDetect.Enabled = false;  
                btnStopForegroundDetect.Enabled = true;  
            }  
      
            //停止前景检测  
            private void btnStopForegroundDetect_Click(object sender, EventArgs e)  
            {  
                lock (lockObject)  
                {  
                    isForegroundDetecting = false;  
                }  
                btnStartBackgroundModel.Enabled = true;  
                btnStopBackgroundModel.Enabled = false;  
                btnStartForegroundDetect.Enabled = true;  
                btnStopForegroundDetect.Enabled = false;  
            }  
        }  
      
        //前景检测方法枚举  
        public enum ForegroundDetectType  
        {  
            FrameDiff,  
            AccAvg,  
            RunningAvg,  
            MultiplyAcc,  
            SquareAcc,  
            CodeBook,  
            Mog,  
            Fgd  
        }  
      
        //设置参数  
        public struct SettingParam  
        {  
            public ForegroundDetectType ForegroundDetectType;  
            public int MaxBackgroundModelFrameCount;  
            public double Threshold;  
      
            public SettingParam(ForegroundDetectType foregroundDetectType, int maxBackgroundModelFrameCount, double threshold)  
            {  
                ForegroundDetectType = foregroundDetectType;  
                MaxBackgroundModelFrameCount = maxBackgroundModelFrameCount;  
                Threshold = threshold;  
            }  
        }  
    }  

    另外,细心的读者发现我忘记贴OpenCvInvoke类的实现代码了,这里补上。多谢指正。

    using System;  
    using System.Collections.Generic;  
    using System.Linq;  
    using System.Text;  
    using System.Drawing;  
    using System.Runtime.InteropServices;  
    using Emgu.CV.Structure;  
    using Emgu.CV.CvEnum;  
      
    namespace ImageProcessLearn  
    {  
        /// <summary>  
        /// 声明一些没有包含在EmguCv中的OpenCv函数  
        /// </summary>  
        public static class OpenCvInvoke  
        {  
            //自适应动态背景检测  
            [DllImport("cvaux200.dll")]  
            public static extern void cvChangeDetection(IntPtr prev_frame, IntPtr curr_frame, IntPtr change_mask);  
      
            //均值漂移分割  
            [DllImport("cv200.dll")]  
            public static extern void cvPyrMeanShiftFiltering(IntPtr src, IntPtr dst, double spatialRadius, double colorRadius, int max_level, MCvTermCriteria termcrit);  
      
            //开始查找轮廓  
            [DllImport("cv200.dll")]  
            public static extern IntPtr cvStartFindContours(IntPtr image, IntPtr storage, int header_size, RETR_TYPE mode, CHAIN_APPROX_METHOD method, Point offset);  
      
            //查找下一个轮廓  
            [DllImport("cv200.dll")]  
            public static extern IntPtr cvFindNextContour(IntPtr scanner);  
      
            //用新轮廓替换scanner指向的当前轮廓  
            [DllImport("cv200.dll")]  
            public static extern void cvSubstituteContour(IntPtr scanner, IntPtr new_contour);  
      
            //结束轮廓查找  
            [DllImport("cv200.dll")]  
            public static extern IntPtr cvEndFindContour(ref IntPtr scanner);  
        }  
    }  


    后记
        值得注意的是,本文提到的OpenCv函数目前属于CvAux系列,以后也许会加入到正式的图像处理Cv系列,也许以后会消失。最重要的是它们还没有正式的文档。

        其实关于背景模型的方法还有很多,比如《Video-object segmentation using multi-sprite background subtraction》可以在摄像机运动的情况下建立背景《Nonparametric background generation》利用mean-shift算法处理动态的背景模型,如果我的时间和能力允许,也许会去尝试实现它们。另外,《Wallflower: Principles and practice of background maintenance》比较了各种背景建模方式的差异,我希望能够尝试翻译出来。

        感谢您耐心看完本文,希望对您有所帮助。

  • 相关阅读:
    .Net 并发写入文件的多种方式
    变量命名神器——CODELF
    Python打包发布
    python工具——NumPy
    python工具——Pandas
    没事早点睡
    python工具——pixellib
    Tensorflow在Windows下使用踩坑
    python工具——Tesseract
    python工具——wordcloud
  • 原文地址:https://www.cnblogs.com/huty/p/8518132.html
Copyright © 2011-2022 走看看