zoukankan      html  css  js  c++  java
  • hdu 2256 Problem of Precision 构造整数 + 矩阵快速幂

    http://acm.hdu.edu.cn/showproblem.php?pid=2256

    题意:给定 n left(1<=n<=10^9
ight)   求解   leftlfloorleft(sqrt{2}+sqrt{3}
ight)^{2n}
ight
floor\%1024

    思路:left(sqrt{2}+sqrt{3}
ight)^{2}
ight=5+2sqrt{6} , 令  {x_n}+{y_n}sqrt{6}=left(sqrt{2}+sqrt{3}
ight)^{n}
ight

    那么 x_n+y_n*sqrt{6}=left(x_{n-1}+y_{n-1}*sqrt{6}
ight)*left(5+2sqrt{6}
ight)

    得: x_n+y_n*sqrt{6}=left(5x_{n-1}+6y_{n-1}
ight)+left(x_{n-1}+5y_{n-1}
ight)*sqrt{6}

    得转移矩阵: egin{bmatrix}
x_n\
y_n
end{bmatrix}
=
egin{bmatrix}
5&6\
1&5
end{bmatrix}
egin{bmatrix}
x_{n-1}\
y_{n-1}
end{bmatrix}


    但是上面求出来的并不是结果,并不是整数。需要加上left(5-sqrt{6}
ight)^{n}, 由于left(5-sqrt{6}
ight)^{n}<1

    所以结果为2X_{n-1}-1

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<bits/stdc++.h>
    using namespace std;
    #define rep0(i,l,r) for(int i = (l);i < (r);i++)
    #define rep1(i,l,r) for(int i = (l);i <= (r);i++)
    #define rep_0(i,r,l) for(int i = (r);i > (l);i--)
    #define rep_1(i,r,l) for(int i = (r);i >= (l);i--)
    #define MS0(a) memset(a,0,sizeof(a))
    #define MS1(a) memset(a,-1,sizeof(a))
    #define MSi(a) memset(a,0x3f,sizeof(a))
    #define pb push_back
    #define MK make_pair
    #define A first
    #define B second
    #define clear0 (0xFFFFFFFE)
    #define inf 0x3f3f3f3f
    #define eps 1e-8
    #define mod 1024
    #define zero(x) (((x)>0?(x):-(x))<eps)
    #define bitnum(a) __builtin_popcount(a)
    #define lowbit(x) (x&(-x))
    #define K(x) ((x)*(x))
    typedef pair<int,int> PII;
    typedef long long ll;
    typedef unsigned int uint;
    typedef unsigned long long ull;
    template<typename T>
    void read1(T &m)
    {
        T x = 0,f = 1;char ch = getchar();
        while(ch <'0' || ch >'9'){ if(ch == '-') f = -1;ch=getchar(); }
        while(ch >= '0' && ch <= '9'){ x = x*10 + ch - '0';ch = getchar(); }
        m = x*f;
    }
    template<typename T>
    void read2(T &a,T &b){read1(a);read1(b);}
    template<typename T>
    void read3(T &a,T &b,T &c){read1(a);read1(b);read1(c);}
    template<typename T>
    void out(T a)
    {
        if(a>9) out(a/10);
        putchar(a%10+'0');
    }
    inline ll gcd(ll a,ll b){ return b == 0? a: gcd(b,a%b); }
    inline ll lcm(ll a,ll b){ return a/gcd(a,b)*b; }
    template<class T1, class T2> inline void gmax(T1& a, T2 b){ if(a < b) a = b;}
    template<class T1, class T2> inline void gmin(T1& a, T2 b){ if(a > b) a = b;}
    
    struct Matrix{
        int row, col;
        int m[10][10];
        Matrix(int r,int c):row(r),col(c){ memset(m, 0, sizeof(m)); }
    
        bool unitMatrix(){
            if(row != col) return false;
            for(int i = 0;i < row;i++) //方阵才有单位矩阵;
                    m[i][i] = 1;
            return true;
        }
        Matrix operator *(const Matrix& t){
            Matrix res(row, t.col);
            for(int i = 0; i < row; i++)
                for(int j = 0;j < t.col;j++)
                    for(int k = 0; k < col; k++)
                        res.m[i][j] = (res.m[i][j] + m[i][k]*t.m[k][j])% mod;
            return res;
        }
        void print(){
            for(int i = 0;i < row; i++){
                for(int j = 0;j < col; j++)
                    printf("%d ",m[i][j]);
                puts("");
            }
        }
    };
    
    Matrix pow(Matrix a, int n)
    {
        Matrix res(a.row, a.col);
        res.unitMatrix();
        while(n){
            if(n & 1) res = res*a;
            a = a*a;
            n >>= 1;
        }
        return res;
    }
    int main()
    {
        //freopen("data.txt","r",stdin);
        //freopen("out.txt","w",stdout);
        Matrix mat(2,2);
        mat.m[0][0] = 5, mat.m[0][1] = 12;
        mat.m[1][0] = 2, mat.m[1][1] = 5;
        int T, kase = 1;
        scanf("%d",&T);
        while(T--){
            int n;
            read1(n);
            Matrix res = pow(mat, n-1);
            Matrix tmp(2,1);
            tmp.m[0][0] = 5, tmp.m[1][0] = 2;
            res = res*tmp;
            printf("%d
    ", (2*res.m[0][0]-1)% mod);
        }
        return 0;
    }
  • 相关阅读:
    robots协议
    Java Script学习 4(转)
    Java Script学习 3(转)
    HTML 8 总结(转)
    HTML 7 (转)
    HTML 6 (转)
    HTML 5 (转)
    python类方法/实例方法/静态方法
    chromedriver下载地址
    字符编码表
  • 原文地址:https://www.cnblogs.com/hxer/p/5724453.html
Copyright © 2011-2022 走看看