zoukankan      html  css  js  c++  java
  • HDU 1492

    The number of divisors(约数) about Humble Numbers

    Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 1708 Accepted Submission(s): 833


    Problem Description
    A number whose only prime factors are 2,3,5 or 7 is called a humble number. The sequence 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 27, ... shows the first 20 humble numbers.

    Now given a humble number, please write a program to calculate the number of divisors about this humble number.For examle, 4 is a humble,and it have 3 divisors(1,2,4);12 have 6 divisors.

     
    Input
    The input consists of multiple test cases. Each test case consists of one humble number n,and n is in the range of 64-bits signed integer. Input is terminated by a value of zero for n.
     
    Output
    For each test case, output its divisor number, one line per case.
     
    Sample Input
    4 12 0
     
    Sample Output
    3 6
     1 #include<stdio.h>
     2 int main()
     3 {
     4     long long n;
     5     int p2,p3,p5,p7;
     6     while(scanf("%I64d",&n),n)
     7     {
     8         p2=p3=p5=p7=0;
     9         while(n%2==0)
    10         {
    11             n/=2;
    12             p2++;
    13         }    
    14         while(n%3==0)
    15         {
    16             n/=3;
    17             p3++;
    18         }    
    19         while(n%5==0)
    20         {
    21             n/=5;
    22             p5++;
    23         }    
    24         while(n%7==0)
    25         {
    26             n/=7;
    27             p7++;
    28         }    
    29         printf("%d\n",(p2+1)*(p3+1)*(p5+1)*(p7+1));//乘法原理,2 3 5 7可以一个都不要所以必须加一 
    30     }    
    31     return 0;
    32 }
  • 相关阅读:
    TCP三次握手过程
    btree b+tree 的关系
    volatile和指令重排序
    事务一致性理解 事务ACID特性的完全解答
    JVM 详解
    java 并发 详解
    socker TCP UDP BIO NIO
    mysql 主从复制 配置
    身份证格式验证 方法
    分布式事务 XA 两段式事务 X/open CAP BASE 一次分清
  • 原文地址:https://www.cnblogs.com/hxsyl/p/2667745.html
Copyright © 2011-2022 走看看