for iter = 1:num_iters
%梯度下降 用户向量
for i = 1:m
%返回有0有1 是逻辑值
ratedIndex1 = R_training(i,:)~=0 ;
%U(i,:) * V' 第i个用户分别对每个电影的评分
%sumVec1 第i个用户分别对每个电影的评分 减去真实值
sumVec1 = ratedIndex1 .* (U(i,:) * V' - R_training(i,:));
product1 = sumVec1 * V;
derivative1 = product1 + lambda_u * U(i,:);
old_U(i,:) = U(i,:) - theta * derivative1;
end
%梯度下降 电影向量
for j = 1:n
ratedIndex2 = R_training(:,j)~=0;
sumVec2 = ratedIndex2 .* (U * V(j,:)' - R_training(:,j));
product2 = sumVec2' * U;
derivative2 = product2 + lambda_v * V(j,:);
old_V(j,:) = V(j,:) - theta * derivative2;
end
U = old_U;
V = old_V;
RMSE(i,1) = CompRMSE(train_vec,U,V);
RMSE(i,2) = CompRMSE(probe_vec,U,V);
end
......................................................................
SGD解决
function [ recItems ] = mf_gd( trainMatrix, featureNumber, maxEpoch, learnRate, lambdaU, lambdaV, k) %get the size the train matrix [userNumber,itemNumber] = size(trainMatrix); %init user factors and item factors Ut = 0.01 * randn(userNumber, featureNumber); Vt = 0.01 * randn(itemNumber, featureNumber); %逻辑1和0 logitMatrix = trainMatrix > 0; %calculate the gradient of user factors and item factors %and user sgd to optimize the risk function %alternative update user factors and item factors alternative for round = 1:maxEpoch, dU = -(logitMatrix .* trainMatrix) * Vt + (Ut * Vt' .* logitMatrix ) * Vt + lambdaU * Ut; dV = -(logitMatrix' .* trainMatrix') * Ut + (Vt * Ut' .* logitMatrix') * Ut + lambdaV * Vt; Ut = Ut - learnRate * dU * 2; Vt = Vt - learnRate * dV * 2; end %predict the rating of each item given by each user predictMatrix = Ut * Vt'; %sort the score of items for each user [sortedMatrix, sortedItems] = sort(predictMatrix, 2, 'descend'); %get the top-k items for each suer recItems = sortedItems(:, 1:k); end