zoukankan      html  css  js  c++  java
  • 【图论补完计划】poj 3013 (dijkstra)

    Big Christmas Tree
    Time Limit: 3000MS   Memory Limit: 131072K
    Total Submissions: 23954   Accepted: 5201

    Description

    Christmas is coming to KCM city. Suby the loyal civilian in KCM city is preparing a big neat Christmas tree. The simple structure of the tree is shown in right picture.

    The tree can be represented as a collection of numbered nodes and some edges. The nodes are numbered 1 through n. The root is always numbered 1. Every node in the tree has its weight. The weights can be different from each other. Also the shape of every available edge between two nodes is different, so the unit price of each edge is different. Because of a technical difficulty, price of an edge will be (sum of weights of all descendant nodes) × (unit price of the edge).

    Suby wants to minimize the cost of whole tree among all possible choices. Also he wants to use all nodes because he wants a large tree. So he decided to ask you for helping solve this task by find the minimum cost.

    Input

    The input consists of T test cases. The number of test cases T is given in the first line of the input file. Each test case consists of several lines. Two numbers v, e (0 ≤ v, e ≤ 50000) are given in the first line of each test case. On the next line, v positive integers wi indicating the weights of v nodes are given in one line. On the following e lines, each line contain three positive integers a, b, c indicating the edge which is able to connect two nodes a and b, and unit price c.

    All numbers in input are less than 216.

    Output

    For each test case, output an integer indicating the minimum possible cost for the tree in one line. If there is no way to build a Christmas tree, print “No Answer” in one line.

    Sample Input

    2
    2 1
    1 1
    1 2 15
    7 7
    200 10 20 30 40 50 60
    1 2 1
    2 3 3
    2 4 2
    3 5 4
    3 7 2
    3 6 3
    1 5 9

    Sample Output

    15
    1210


    #include <iostream>
    #include <cstdio>
    #include <vector>
    #include <queue>
    #include <functional>
    #include <cstring>
    
    using namespace std;
    
    typedef long long ll;
    
    const int maxn=5e4+10;
    const ll inf=1e18;
    
    vector<pair<int,ll> > G[maxn];
    ll d[maxn];
    int co[maxn];
    bool inq[maxn];
    int n,m;
    
    void init(){
        for(int i=0;i<maxn;i++) G[i].clear();
        for(int i=0;i<maxn;i++) d[i]=inf;
        memset(co,0,sizeof(co));
        memset(inq,0,sizeof(inq));
    }
    
    ll dijkstra(int s){
        priority_queue<pair<ll,int>,vector<pair<ll,int> >,greater<pair<ll,int> > > q;
        int cou=0;
        ll ans=0;
        d[s]=0;
        q.push(make_pair(d[s],s));
        while(!q.empty()){
            int now=q.top().second;
            q.pop();
            if(inq[now]) continue;
            inq[now]=1;
            cou++;
            ans+=d[now]*co[now];
            for(int i=0;i<G[now].size();i++){
                int v=G[now][i].first;
                if(d[v]>d[now]+G[now][i].second){
                    d[v]=d[now]+G[now][i].second;
                    q.push(make_pair(d[v],v));
                }
            }
        }
        if(cou<n) return -1;
        else return ans;
    }
    
    int main(){
        int T;
        scanf("%d",&T);
        while(T--){
            init();
            scanf("%d %d",&n,&m);
            for(int i=1;i<=n;i++){
                scanf("%d",&co[i]);
            }
            for(int i=0;i<m;i++){
                int s,t,v;
                scanf("%d %d %d",&s,&t,&v);
                G[s].push_back(make_pair(t,v));
                G[t].push_back(make_pair(s,v));
            }
            if(n==0||n==1){
                printf("0
    ");
                continue;
            }
            ll ans=dijkstra(1);
            if(ans==-1) printf("No Answer
    ");
            else printf("%I64d
    ",ans);
        }
        return 0;
    }
  • 相关阅读:
    hdu (欧拉函数+容斥原理) GCD
    UVA 11624 Fire!
    drf框架之跨域问题的解决与缓存问题
    drf框架之分页器的用法
    DRF框架之 用户角色权限与访问频率的权限设置
    DRF框架之认证组件用法(第四天)
    DRF框架之视图方法的几个封装好的模块介绍(第三天)
    DRF框架之 serializers 序列化组件
    DRF框架简介(第一天)
    BBS(第三天) 如何吧用户上传的图片文件保存到本地
  • 原文地址:https://www.cnblogs.com/hymscott/p/6485538.html
Copyright © 2011-2022 走看看