zoukankan      html  css  js  c++  java
  • tensorflow 基础学习九:mnist卷积神经网络

    mnist_inference.py:

    # -*- coding:utf-8 -*-
    import tensorflow as tf
    
    # 配置神经网络参数
    INPUT_NODE=784
    OUTPUT_NODE=10
    
    IMAGE_SIZE=28
    NUM_CHANNELS=1
    NUM_LABELS=10
    
    # 第一层卷积层的尺寸和深度
    CONV1_DEEP=32
    CONV1_SIZE=5
    # 第二层卷积层的尺寸和深度
    CONV2_DEEP=64
    CONV2_SIZE=5
    # 全连接层的节点个数
    FC_SIZE=512
    
    def inference(input_tensor,train,regularizer):
        
        # 输入:28×28×1,输出:28×28×32
        with tf.variable_scope('layer1-conv1'):
            conv1_weights=tf.get_variable('weights',[CONV1_SIZE,CONV1_SIZE,NUM_CHANNELS,CONV1_DEEP],
                                         initializer=tf.truncated_normal_initializer(stddev=0.1))
            conv1_biases=tf.get_variable('biases',[CONV1_DEEP],initializer=tf.constant_initializer(0.0))
            # 使用尺寸为5,深度为32的过滤器,步长为1,使用全0填充
            conv1=tf.nn.conv2d(input_tensor,conv1_weights,strides=[1,1,1,1],padding='SAME')
            relu1=tf.nn.relu(tf.nn.bias_add(conv1,conv1_biases))
        
        # 输入:28×28×32,输出:14×14×32
        with tf.name_scope('layer2-pool1'):
            pool1=tf.nn.max_pool(relu1,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
        
        # 输入:14×14×32,输出:14×14×64
        with tf.variable_scope('layer3-conv2'):
            conv2_weights=tf.get_variable('weights',[CONV2_SIZE,CONV2_SIZE,CONV1_DEEP,CONV2_DEEP],
                                         initializer=tf.truncated_normal_initializer(stddev=0.1))
            conv2_biases=tf.get_variable('biases',[CONV2_DEEP],initializer=tf.constant_initializer(0.0))
            
             # 使用尺寸为5,深度为64的过滤器,步长为1,使用全0填充
            conv2=tf.nn.conv2d(pool1,conv2_weights,strides=[1,1,1,1],padding='SAME')
            relu2=tf.nn.relu(tf.nn.bias_add(conv2,conv2_biases))
        
        # 输入:14×14×64,输出:7×7×64
        with tf.name_scope('layer4-pool2'):
            pool2=tf.nn.max_pool(relu2,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
            # 将7×7×64的矩阵转换成一个向量,因为每一层神经网络的输入输出都为一个batch矩阵,所以这里得到的维度
            # 也包含了一个batch中数据的个数(batch×7×7×64 --> batch×vector)
            pool_shape=pool2.get_shape().as_list()
            # pool_shape[0]为一个batch中数据的个数
            nodes=pool_shape[1]*pool_shape[2]*pool_shape[3]
            # 通过tf.reshape函数将第四层的输出变成一个batch的向量
            reshaped=tf.reshape(pool2,[pool_shape[0],nodes])
        
        with tf.variable_scope('layer5-fc1'):
            fc1_weights=tf.get_variable('weights',[nodes,FC_SIZE],initializer=tf.truncated_normal_initializer(stddev=0.1))
            # 只有全连接层的权重需要加入正则化
            if regularizer != None:
                tf.add_to_collection('losses',regularizer(fc1_weights))
            fc1_biases=tf.get_variable('biases',[FC_SIZE],initializer=tf.constant_initializer(0.1))
            fc1=tf.nn.relu(tf.matmul(reshaped,fc1_weights)+fc1_biases)
            if train:
                fc1=tf.nn.dropout(fc1,0.5)
        
        with tf.variable_scope('layer6-fc2'):
            fc2_weights=tf.get_variable('weights',[FC_SIZE,NUM_LABELS],initializer=tf.truncated_normal_initializer(stddev=0.1))
            if regularizer != None:
                tf.add_to_collection('losses',regularizer(fc2_weights))
            fc2_biases=tf.get_variable('biases',[NUM_LABELS],initializer=tf.constant_initializer(0.1))
            logit=tf.matmul(fc1,fc2_weights)+fc2_biases
        
        return logit
    

    mnist_train.py:

    # -*- coding:utf-8 -*-
    import os
    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    import numpy as np
    import mnist_inference
    
    
    # 配置神经网络的参数
    BATCH_SIZE=100
    LEARNING_RATE_BASE=0.01
    LEARNING_RATE_DECAY=0.99
    REGULARAZTION_RATE=0.0001
    TRAINING_STEPS=6000
    MOVING_AVERAGE_DECAY=0.99
    
    # 模型保存的路径和文件名
    MODEL_SAVE_PATH='log/'
    MODEL_NAME='model.ckpt'
    
    def train(mnist):
        # 定义输入输出placeholder
        x=tf.placeholder(tf.float32,[BATCH_SIZE,mnist_inference.IMAGE_SIZE,mnist_inference.IMAGE_SIZE,mnist_inference.NUM_CHANNELS],name='x-input')
        y_=tf.placeholder(tf.float32,[None,mnist_inference.OUTPUT_NODE],name='y-input')
        
        regularizer=tf.contrib.layers.l2_regularizer(REGULARAZTION_RATE)
        # 直接使用mnist_inference.py 中定义的前向传播过程。
        y=mnist_inference.inference(x,False,regularizer)
        
        global_step=tf.Variable(0,trainable=False)
        
        # 定义损失函数、学习率、滑动平均操作以及训练过程。
        variable_averages=tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY,global_step)
        variable_averages_op=variable_averages.apply(tf.trainable_variables())
        
        cross_entropy=tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y,labels=tf.argmax(y_,1))
        cross_entropy_mean=tf.reduce_mean(cross_entropy)
        loss=cross_entropy_mean+tf.add_n(tf.get_collection('losses'))
        
        learning_rate=tf.train.exponential_decay(LEARNING_RATE_BASE,global_step,
                    mnist.train.num_examples/BATCH_SIZE,LEARNING_RATE_DECAY,staircase=True)
        train_step=tf.train.GradientDescentOptimizer(learning_rate).minimize(loss,global_step=global_step)
        
        with tf.control_dependencies([train_step,variable_averages_op]):
            train_op=tf.no_op(name='train')
        
        # 初始化Tensorflow持久化类
        saver=tf.train.Saver()
        with tf.Session() as sess:
            tf.global_variables_initializer().run()
            
            # 在训练时不在测试模型的在验证数据上的表现,验证和测试的过程将会用一个独立的程序来完成
            for i in range(TRAINING_STEPS):
                xs,ys=mnist.train.next_batch(BATCH_SIZE)
                reshaped_xs=np.reshape(xs,(BATCH_SIZE,mnist_inference.IMAGE_SIZE,mnist_inference.IMAGE_SIZE,mnist_inference.NUM_CHANNELS))
                _,loss_value,step=sess.run([train_op,loss,global_step],feed_dict={x:reshaped_xs,y_:ys})
                
                # 每1000轮保存一次模型
                if i % 1000 == 0:
                    print('After {} training step(s), loss on training batch is {}.'.format(step,loss_value))
                    # 这里给出了global_step参数,可以在每个被保存模型的文件名末尾加上训练的轮数
                    saver.save(sess,os.path.join(MODEL_SAVE_PATH,MODEL_NAME),global_step=global_step)
                    
    def main(argv=None):
        mnist=input_data.read_data_sets('.',one_hot=True)
        train(mnist)
    
    if __name__ == '__main__':
        tf.app.run()
    
  • 相关阅读:
    IO流 编码格式转换
    SFTP
    windows下redis 开机自启动
    NationalInstruments.UI.WindowsForms.NumericEdit
    VisualStudio SVN忽略
    VS2012 项目引用了项目/DLL文件,也写了Using,但是编译时提示:未能找到类型或命名空间名称
    JS原型链与继承
    HTML+CSS快速编写插件EMMET
    PHP中的替代语法(冒号、endif、endwhile、endfor)(转)
    在Android studio中如何把项目放到远程git或从远程git得到项目
  • 原文地址:https://www.cnblogs.com/hypnus-ly/p/8322671.html
Copyright © 2011-2022 走看看