zoukankan      html  css  js  c++  java
  • Kylin

    1、Kylin简介

    1.1 kylin简介

    Apache Kylin™是一个开源的、分布式的分析型数据仓库,提供Hadoop/Spark 之上的 SQL 查询接口及多维分析(OLAP)能力以支持超大规模数据,最初由 eBay 开发并贡献至开源社区。它能在亚秒内查询巨大的表。

    Apache Kylin™ 令使用者仅需三步,即可实现超大数据集上的亚秒级查询。

    1. 定义数据集上的一个星形或雪花形模型
    2. 在定义的数据表上构建cube
    3. 使用标准 SQL 通过 ODBC、JDBC 或 RESTFUL API 进行查询,仅需亚秒级响应时间即可获得查询结果

    1.2 Kylin架构

    1)REST Server

    REST Server是一套面向应用程序开发的入口点,旨在实现针对Kylin平台的应用开发工作。 此类应用程序可以提供查询、获取结果、触发cube构建任务、获取元数据以及获取用户权限等等。另外可以通过Restful接口实现SQL查询。

    2)查询引擎(Query Engine)

    当cube准备就绪后,查询引擎就能够获取并解析用户查询。它随后会与系统中的其它组件进行交互,从而向用户返回对应的结果。 

    3)路由器(Routing)

    在最初设计时曾考虑过将Kylin不能执行的查询引导去Hive中继续执行,但在实践后发现Hive与Kylin的速度差异过大,导致用户无法对查询的速度有一致的期望,很可能大多数查询几秒内就返回结果了,而有些查询则要等几分钟到几十分钟,因此体验非常糟糕。最后这个路由功能在发行版中默认关闭。

    4)元数据管理工具(Metadata)

    Kylin是一款元数据驱动型应用程序。元数据管理工具是一大关键性组件,用于对保存在Kylin当中的所有元数据进行管理,其中包括最为重要的cube元数据。

    其它全部组件的正常运作都需以元数据管理工具为基础。

    Kylin的元数据存储在hbase中

    5)Cube Build Engine

    这套引擎的设计目的在于处理所有离线任务,其中包括shell脚本、Java API以及Map Reduce任务等等。任务引擎对Kylin当中的全部任务加以管理与协调,从而确保每一项任务都能得到切实执行并解决其间出现的故障。

    1.3 Kylin特点

    kylin主要特点包括支持SQL接口、支出超大规模数据集、亚秒级响应、可伸缩性、高吞吐率、BI工具继承等特点

    1)标准SQL接口:Kylin是以标准的SQL作为对外服务的接口。

    2)支持超大数据集:Kylin对于大数据的支撑能力可能是目前所有技术中最为领先的。早在2015年eBay的生产环境中就能支持百亿记录的秒级查询,之后在移动的应用场景中又有了千亿记录秒级查询的案例。

    3)亚秒级响应:Kylin拥有优异的查询相应速度,这点得益于预计算,很多复杂的计算,比如连接、聚合,在离线的预计算过程中就已经完成,这大大降低了查询时刻所需的计算量,提高了响应速度。

    4)可伸缩性和高吞吐率:单节点Kylin可实现每秒70个查询,还可以搭建Kylin的集群。

    5)BI工具集成

    Kylin可以与现有的BI工具集成,具体包括如下内容。

    ODBC:与Tableau、Excel、PowerBI等工具集成

    JDBC:与Saiku、BIRT等Java工具集成

    RestAPI:与JavaScript、Web网页集成

    Kylin开发团队还贡献了Zepplin的插件,也可以使用Zepplin来访问Kylin服务

    2、kylin使用

    1. 创建工程
    1. 创建数据源
    2. 创建model
      • new model
      • 指定事实表
      • 指定维度表
      • 指定维度字段
      • 指定度量字段
      • 指定事实表分区字段(仅支持时间分区)
    3. 构建cube

    3、cube

    2.1、什么是 Cube

    Cube 即多维立方体,也叫数据立方体。如下图所示,这是由三个维度(维度数可以超过3个,下图仅为了方便画图表达)构成的一个OLAP立方体,立方体中包含了满足条件的cell(子立方块)值,这些cell里面包含了要分析的数据,称之为度量值。

    • 立方体:由维度构建出来的多维空间,包含了所有要分析的基础数据,所有的聚合数据操作都在立方体上进行
    • 维度:观察数据的角度。一般是一组离散的值,比如:
      • 时间维度上的每一个独立的日期
      • 商品维度上的每一件独立的商品
    • 度量:即聚合计算的结果,一般是连续的值,比如:
      • 销售额,销售均价
      • 销售商品的总件数
    • 事实表:是指存储有事实记录(明细数据)的表,如系统日志、销售记录等;事实表的记录在不断地动态增长,数据量大
    • 维度表(维表):保存了维度值,可以跟事实表做关联。常见的维度表如:
      • 日期表
      • 地点表
      • 分类表
    • Cuboid:对于每一种维度的组合,将度量做聚合运算,然后将运算的结果保存为一个物化视图,称为 Cuboid

    2.2、创建数据模型

    2.2.1、数据模型

    常见的多维数据模型,如星型模型、雪花模型等。星型模型:有一张事实表、以及零个或多个维度表;事实表与维度表通过 主键/外键 相关联,维度表之间没有关联,就像很多星星围绕在一个恒星周围,顾命名为星型模型。

    雪花模型:如果将星型模型中某些维度的表再做规范,抽取成更细的维度表,然后让维度表之间也进行关联,那么这种模型成为雪花模型(雪花模型可以通过一定的转换,变为星型模型)

    4、cube构建原理

    4.1 存储原理

    4.3 构建算法

    4.3.1 逐级构建算法(layer)

    我们知道,一个N维的Cube,是由1个N维子立方体、N个(N-1)维子立方体、N*(N-1)/2个(N-2)维子立方体、......、N个1维子立方体和1个0维子立方体构成,总共有2^N个子立方体组成,在逐层算法中,按维度数逐层减少来计算,每个层级的计算(除了第一层,它是从原始数据聚合而来),是基于它上一层级的结果来计算的。比如,[Group by A, B]的结果,可以基于[Group by A, B, C]的结果,通过去掉C后聚合得来的;这样可以减少重复计算;当 0维度Cuboid计算出来的时候,整个Cube的计算也就完成了。

    每一轮的计算都是一个MapReduce任务,且串行执行;一个N维的Cube,至少需要N次MapReduce Job。

    优点:

    1)此算法充分利用了MapReduce的优点,处理了中间复杂的排序和shuffle工作,故而算法代码清晰简单,易于维护;

    2)受益于Hadoop的日趋成熟,此算法非常稳定,即便是集群资源紧张时,也能保证最终能够完成。

    缺点:

    1)当Cube有比较多维度的时候,所需要的MapReduce任务也相应增加;由于Hadoop的任务调度需要耗费额外资源,特别是集群较庞大的时候,反复递交任务造成的额外开销会相当可观;

    2)由于Mapper逻辑中并未进行聚合操作,所以每轮MR的shuffle工作量都很大,导致效率低下。

    3)对HDFS的读写操作较多:由于每一层计算的输出会用做下一层计算的输入,这些Key-Value需要写到HDFS上;当所有计算都完成后,Kylin还需要额外的一轮任务将这些文件转成HBase的HFile格式,以导入到HBase中去;

    总体而言,该算法的效率较低,尤其是当Cube维度数较大的时候。

    4.3.2 快速构建算法(inmem)

    也被称作“逐段”(By Segment) 或“逐块”(By Split) 算法,从1.5.x开始引入该算法,该算法的主要思想是,每个Mapper将其所分配到的数据块,计算成一个完整的小Cube 段(包含所有Cuboid)。每个Mapper将计算完的Cube段输出给Reducer做合并,生成大Cube,也就是最终结果。如图所示解释了此流程。

    与旧算法相比,快速算法主要有两点不同:

    1) Mapper会利用内存做预聚合,算出所有组合;Mapper输出的每个Key都是不同的,这样会减少输出到Hadoop MapReduce的数据量,Combiner也不再需要;

    2)一轮MapReduce便会完成所有层次的计算,减少Hadoop任务的调配。

    5、cube构建优化

    5.1 使用衍生维度(deriveddimension)

    衍生维度用于在有效维度内将维度表上的非主键维度排除掉,并使用维度表的主键(其实是事实表上相应的外键)来替代它们。Kylin会在底层记录维度表主键与维度表其他维度之间的映射关系,以便在查询时能够动态地将维度表的主键“翻译”成这些非主键维度,并进行实时聚合。

    虽然衍生维度具有非常大的吸引力,但这也并不是说所有维度表上的维度都得变成衍生维度,如果从维度表主键到某个维度表维度所需要的聚合工作量非常大,则不建议使用衍生维度。

    5.2 使用聚合组(Aggregationgroup)

    聚合组(Aggregation Group)是一种强大的剪枝工具。聚合组假设一个Cube的所有维度均可以根据业务需求划分成若干组(当然也可以是一个组),由于同一个组内的维度更可能同时被同一个查询用到,因此会表现出更加紧密的内在关联。每个分组的维度集合均是Cube所有维度的一个子集,不同的分组各自拥有一套维度集合,它们可能与其他分组有相同的维度,也可能没有相同的维度。每个分组各自独立地根据自身的规则贡献出一批需要被物化的Cuboid,所有分组贡献的Cuboid的并集就成为了当前Cube中所有需要物化的Cuboid的集合。不同的分组有可能会贡献出相同的Cuboid,构建引擎会察觉到这点,并且保证每一个Cuboid无论在多少个分组中出现,它都只会被物化一次。

    对于每个分组内部的维度,用户可以使用如下三种可选的方式定义,它们之间的关系,具体如下。

    1)强制维度(Mandatory),如果一个维度被定义为强制维度,那么这个分组产生的所有Cuboid中每一个Cuboid都会包含该维度。每个分组中都可以有0个、1个或多个强制维度。如果根据这个分组的业务逻辑,则相关的查询一定会在过滤条件或分组条件中,因此可以在该分组中把该维度设置为强制维度。

    2)层级维度(Hierarchy),每个层级包含两个或更多个维度。假设一个层级中包含D1,D2…Dn这n个维度,那么在该分组产生的任何Cuboid中, 这n个维度只会以(),(D1),(D1,D2)…(D1,D2…Dn)这n+1种形式中的一种出现。每个分组中可以有0个、1个或多个层级,不同的层级之间不应当有共享的维度。如果根据这个分组的业务逻辑,则多个维度直接存在层级关系,因此可以在该分组中把这些维度设置为层级维度。

    3)联合维度(Joint),每个联合中包含两个或更多个维度,如果某些列形成一个联合,那么在该分组产生的任何Cuboid中,这些联合维度要么一起出现,要么都不出现。每个分组中可以有0个或多个联合,但是不同的联合之间不应当有共享的维度(否则它们可以合并成一个联合)。如果根据这个分组的业务逻辑,多个维度在查询中总是同时出现,则可以在该分组中把这些维度设置为联合维度。

    5.3 RowKey优化

    Kylin会把所有的维度按照顺序组合成一个完整的Rowkey,并且按照这个Rowkey升序排列Cuboid中所有的行。

    设计良好的Rowkey将更有效地完成数据的查询过滤和定位,减少IO次数,提高查询速度,维度在rowkey中的次序,对查询性能有显著的影响。

    Row key的设计原则如下:

    1)被用作where过滤的维度放在前边。

    2)基数大的维度放在基数小的维度前边

    5.4 并发粒度优化

    当Segment中某一个Cuboid的大小超出一定的阈值时,系统会将该Cuboid的数据分片到多个分区中,以实现Cuboid数据读取的并行化,从而优化Cube的查询速度。

    具体的实现方式如下:构建引擎根据Segment估计的大小,以及参数“kylin.hbase.region.cut”的设置决定Segment在存储引擎中总共需要几个分区来存储,如果存储引擎是HBase,那么分区的数量就对应于HBase中的Region数量。kylin.hbase.region.cut的默认值是5.0,单位是GB,也就是说对于一个大小估计是50GB的Segment,构建引擎会给它分配10个分区。用户还可以通过设置kylin.hbase.region.count.min(默认为1)kylin.hbase.region.count.max(默认为500)两个配置来决定每个Segment最少或最多被划分成多少个分区。

  • 相关阅读:
    oracle 日期和时间转换
    layui 分页 java后端封装
    excel 时间格式
    excel的编程VBA
    excel条件格式
    python列表变成字符串
    Django的ORM源码学习
    robot 源码解读6【元类和描述符类】
    @staticmethod
    python 类定义后调用名称也执行内部代码
  • 原文地址:https://www.cnblogs.com/hyunbar/p/12526636.html
Copyright © 2011-2022 走看看