zoukankan      html  css  js  c++  java
  • POJ 3728

    The merchant
    Time Limit: 3000MS   Memory Limit: 65536K
    Total Submissions: 2887   Accepted: 958

    Description

    There are N cities in a country, and there is one and only one simple path between each pair of cities. A merchant has chosen some paths and wants to earn as much money as possible in each path. When he move along a path, he can choose one city to buy some goods and sell them in a city after it. The goods in all cities are the same but the prices are different. Now your task is to calculate the maximum possible profit on each path.

    Input

    The first line contains N, the number of cities.
    Each of the next N lines contains wi the goods' price in each city.
    Each of the next N-1 lines contains labels of two cities, describing a road between the two cities.
    The next line contains Q, the number of paths.
    Each of the next Q lines contains labels of two cities, describing a path. The cities are numbered from 1 to N.

    1 ≤ NwiQ ≤ 50000 

    Output

    The output contains Q lines, each contains the maximum profit of the corresponding path. If no positive profit can be earned, output 0 instead.

    Sample Input

    4
    1 
    5 
    3 
    2
    1 3
    3 2
    3 4
    9
    1 2
    1 3
    1 4
    2 3
    2 1
    2 4
    3 1
    3 2
    3 4

    Sample Output

    4
    2
    2
    0
    0
    0
    0
    2
    0
    

    Source

     
    lca (trajan) 
      1 #include <iostream>
      2 #include <cstdio>
      3 #include <cstring>
      4 #include <algorithm>
      5 #include <vector>
      6 #include <stack>
      7 
      8 using namespace std;
      9 
     10 const int MAX_N = 50005;
     11 
     12 int N;
     13 int pri[MAX_N],first[MAX_N],v[MAX_N * 2],Next[MAX_N * 2];
     14 int qu[MAX_N],qv[MAX_N];
     15 int Min[MAX_N],Max[MAX_N],down[MAX_N],up[MAX_N];
     16 int f[MAX_N],ans[MAX_N];
     17 bool vis[MAX_N];
     18 vector<int> s[MAX_N];
     19 vector<int> Q[MAX_N];
     20 
     21 void add_edge(int id,int u) {
     22         int e = first[u];
     23         Next[id] = e;
     24         first[u] = id;
     25 }
     26 
     27 int _find(int x) {
     28         if(f[x] == x) return x;
     29 
     30         int t = _find(f[x]);
     31         up[x] = max(up[x],Max[ f[x] ] - Min[ x ]);
     32         up[x] = max(up[x],up[ f[x] ]);
     33         down[x] = max(down[x],down[ f[x] ]);
     34         down[x] = max(down[x],Max[ x ] - Min[ f[x] ]);
     35         Max[x] = max(Max[x],Max[ f[x] ]);
     36         Min[x] = min(Min[x],Min[ f[x] ]);
     37 
     38         return f[x] = t;
     39 }
     40 
     41 void dfs(int u,int fa) {
     42         for(int e = first[u]; e != -1; e = Next[e]) {
     43                 if(v[e] == fa) continue;
     44                 dfs(v[e],u);
     45                 f[_find( v[e] )] = u;
     46         }
     47 
     48         vis[u] = 1;
     49         for(int i = 0; i < Q[u].size(); ++i) {
     50                 int V = qu[ Q[u][i] ] != u ? qu[ Q[u][i] ] : qv[ Q[u][i] ];
     51                 if(vis[V]) {
     52                         int p = _find(V);
     53                         s[p].push_back(Q[u][i]);
     54                 }
     55         }
     56 
     57         for(int i = 0; i < s[u].size(); ++i) {
     58                 int a,b;
     59                 int e = s[u][i];
     60                 a = qu[e],b = qv[e];
     61                 _find(a);
     62                 _find(b);
     63                 ans[e] = max(up[a],down[b]);
     64                 ans[e] = max(ans[e],Max[b] - Min[a]);
     65         }
     66 
     67 
     68 
     69 }
     70 
     71 int main()
     72 {
     73    // freopen("sw.in","r",stdin);
     74     scanf("%d",&N);
     75     for(int i = 1; i <= N; ++i) first[i] = -1;
     76     for(int i = 1; i <= N; ++i) f[i] = i;
     77     for(int i = 1; i <= N; ++i) {
     78             scanf("%d",&pri[i]);
     79             Max[i] = Min[i] = pri[i];
     80     }
     81 
     82     for(int i = 1; i <= 2 * (N - 1); i += 2) {
     83             int u;
     84             scanf("%d%d",&u,&v[i]);
     85             v[i + 1] = u;
     86             add_edge(i,u);
     87             add_edge(i + 1,v[i]);
     88     }
     89 
     90     int q;
     91     scanf("%d",&q);
     92     for(int i = 1; i <= q; ++i) {
     93             scanf("%d%d",&qu[i],&qv[i]);
     94             Q[ qu[i] ].push_back(i);
     95             Q[ qv[i] ].push_back(i);
     96     }
     97 
     98     dfs(1,-1);
     99 
    100     for(int i = 1; i <= q; ++i) {
    101             printf("%d
    ",ans[i]);
    102     }
    103 
    104     return 0;
    105 }
    View Code
  • 相关阅读:
    关于数据库字符集编码及通用软件产品的设计表结构的注意事项
    记一次调用第三方接口,对方获取到参数乱码问题
    Java获取固定格式日期&计算日期相差时长
    Redis之雪崩、穿透、击穿
    [LeetCode] 两数相加 (JavaScript 解法)
    React hooks 获取 dom 引用
    PHP + Redis 实现定任务触发
    测试PHP几种方法写入文件的效率与安全性
    如何调整firefox鼠标滚轮速度
    美美Apple ID 注册教程
  • 原文地址:https://www.cnblogs.com/hyxsolitude/p/3711911.html
Copyright © 2011-2022 走看看