zoukankan      html  css  js  c++  java
  • POJ 3728

    The merchant
    Time Limit: 3000MS   Memory Limit: 65536K
    Total Submissions: 2887   Accepted: 958

    Description

    There are N cities in a country, and there is one and only one simple path between each pair of cities. A merchant has chosen some paths and wants to earn as much money as possible in each path. When he move along a path, he can choose one city to buy some goods and sell them in a city after it. The goods in all cities are the same but the prices are different. Now your task is to calculate the maximum possible profit on each path.

    Input

    The first line contains N, the number of cities.
    Each of the next N lines contains wi the goods' price in each city.
    Each of the next N-1 lines contains labels of two cities, describing a road between the two cities.
    The next line contains Q, the number of paths.
    Each of the next Q lines contains labels of two cities, describing a path. The cities are numbered from 1 to N.

    1 ≤ NwiQ ≤ 50000 

    Output

    The output contains Q lines, each contains the maximum profit of the corresponding path. If no positive profit can be earned, output 0 instead.

    Sample Input

    4
    1 
    5 
    3 
    2
    1 3
    3 2
    3 4
    9
    1 2
    1 3
    1 4
    2 3
    2 1
    2 4
    3 1
    3 2
    3 4

    Sample Output

    4
    2
    2
    0
    0
    0
    0
    2
    0
    

    Source

     
    lca (trajan) 
      1 #include <iostream>
      2 #include <cstdio>
      3 #include <cstring>
      4 #include <algorithm>
      5 #include <vector>
      6 #include <stack>
      7 
      8 using namespace std;
      9 
     10 const int MAX_N = 50005;
     11 
     12 int N;
     13 int pri[MAX_N],first[MAX_N],v[MAX_N * 2],Next[MAX_N * 2];
     14 int qu[MAX_N],qv[MAX_N];
     15 int Min[MAX_N],Max[MAX_N],down[MAX_N],up[MAX_N];
     16 int f[MAX_N],ans[MAX_N];
     17 bool vis[MAX_N];
     18 vector<int> s[MAX_N];
     19 vector<int> Q[MAX_N];
     20 
     21 void add_edge(int id,int u) {
     22         int e = first[u];
     23         Next[id] = e;
     24         first[u] = id;
     25 }
     26 
     27 int _find(int x) {
     28         if(f[x] == x) return x;
     29 
     30         int t = _find(f[x]);
     31         up[x] = max(up[x],Max[ f[x] ] - Min[ x ]);
     32         up[x] = max(up[x],up[ f[x] ]);
     33         down[x] = max(down[x],down[ f[x] ]);
     34         down[x] = max(down[x],Max[ x ] - Min[ f[x] ]);
     35         Max[x] = max(Max[x],Max[ f[x] ]);
     36         Min[x] = min(Min[x],Min[ f[x] ]);
     37 
     38         return f[x] = t;
     39 }
     40 
     41 void dfs(int u,int fa) {
     42         for(int e = first[u]; e != -1; e = Next[e]) {
     43                 if(v[e] == fa) continue;
     44                 dfs(v[e],u);
     45                 f[_find( v[e] )] = u;
     46         }
     47 
     48         vis[u] = 1;
     49         for(int i = 0; i < Q[u].size(); ++i) {
     50                 int V = qu[ Q[u][i] ] != u ? qu[ Q[u][i] ] : qv[ Q[u][i] ];
     51                 if(vis[V]) {
     52                         int p = _find(V);
     53                         s[p].push_back(Q[u][i]);
     54                 }
     55         }
     56 
     57         for(int i = 0; i < s[u].size(); ++i) {
     58                 int a,b;
     59                 int e = s[u][i];
     60                 a = qu[e],b = qv[e];
     61                 _find(a);
     62                 _find(b);
     63                 ans[e] = max(up[a],down[b]);
     64                 ans[e] = max(ans[e],Max[b] - Min[a]);
     65         }
     66 
     67 
     68 
     69 }
     70 
     71 int main()
     72 {
     73    // freopen("sw.in","r",stdin);
     74     scanf("%d",&N);
     75     for(int i = 1; i <= N; ++i) first[i] = -1;
     76     for(int i = 1; i <= N; ++i) f[i] = i;
     77     for(int i = 1; i <= N; ++i) {
     78             scanf("%d",&pri[i]);
     79             Max[i] = Min[i] = pri[i];
     80     }
     81 
     82     for(int i = 1; i <= 2 * (N - 1); i += 2) {
     83             int u;
     84             scanf("%d%d",&u,&v[i]);
     85             v[i + 1] = u;
     86             add_edge(i,u);
     87             add_edge(i + 1,v[i]);
     88     }
     89 
     90     int q;
     91     scanf("%d",&q);
     92     for(int i = 1; i <= q; ++i) {
     93             scanf("%d%d",&qu[i],&qv[i]);
     94             Q[ qu[i] ].push_back(i);
     95             Q[ qv[i] ].push_back(i);
     96     }
     97 
     98     dfs(1,-1);
     99 
    100     for(int i = 1; i <= q; ++i) {
    101             printf("%d
    ",ans[i]);
    102     }
    103 
    104     return 0;
    105 }
    View Code
  • 相关阅读:
    质心坐标(barycentric coordinates)及其应用
    用表存储代替递归算法
    Lua学习之加载其他lua文件
    Mac 端配置 Lua 环境
    聊聊二手房交易遇到的恶心事
    Mac安装Python3后,如何将默认执行的Python2改为Pyhton3
    Mac平台下部署UE4工程到iOS设备的流程
    计算椭圆运动轨迹的算法
    OpenGL中的渲染方式—— GL_TRIANGLE_STRIP
    XDRender_ShaderMode_StandardPBR 间接光照(2)-镜面反射部分(1)
  • 原文地址:https://www.cnblogs.com/hyxsolitude/p/3711911.html
Copyright © 2011-2022 走看看