zoukankan      html  css  js  c++  java
  • Spark集群模式&Spark程序提交

    Spark集群模式&Spark程序提交

    1. 集群管理器

          Spark当前支持三种集群管理方式

                Standalone—Spark自带的一种集群管理方式,易于构建集群。

                Apache Mesos—通用的集群管理,可以在其上运行Hadoop MapReduce和一些服务应用。

                Hadoop YARN—Hadoop2中的资源管理器。

          Tip1: 在集群不是特别大,并且没有mapReduce和Spark同时运行的需求的情况下,用Standalone模式效率最高。

          Tip2: Spark可以在应用间(通过集群管理器)和应用中(如果一个SparkContext中有多项计算任务)进行资源调度。

    2. 组件

          Spark应用程序在集群上以一系列进程集合运行,通过程序(driver program)中的SparkContext对象进行卸掉。SparkContext可以与多种集群管理器(Cluster Manager)相连接,这些集群管理器可以在应用程序间分配计算资源。连到集群管理器后,Spark在急群众查找executor节点,这些节点执行运算与数据的存储。用户的应用程序(以JAR文件的形式传给SparkContext)被发送到executors。最后SparkContext发送任务tasks到executors进行执行。

                                                     

          Tip1: 每个Executor中以线程池的方式并行运行多个Task。意味着是应用程序之间在调度方面(每个driver调度自身的任务)和执行方面(来自不同的任务在不同的JVM上执行)相互隔离,同时,数据无法在不同的应用程序(SparkContext)之间共享,除非数据被写入到额外的存储系统。

          Tip2: Spark对于底层集群管理系统来说是不可知的。只要它能够获得executor进程,并且彼此之间可以进行通信,那么很容易将其运行在一个同时支持其它应用框架的集群管理器(Mesos/YARN)上。

          Tip3: 由于driver在集群上调度任务,它所在的节点应该靠近工作节点,最好位于相同的局域网中。如果想要远程地向集群发送请求,最好是为driver开启RPC,以是的就近提交操作而不是在一个距离工作节点很远的位置启动driver。

    3. 提交应用程序

          使用Spark的bin目录中的spark-submit脚本向集群中提交应用程序。该脚本不论cluster managers有何差异,提交作业时都有相同的接口,不必单独配置。

    4. 使用spark-submit提交任务

          打包好应用程序后,可以使用bin/spark-submit脚本提交应用程序。该脚本负责所需类路径(classpath)以及依赖,该脚本可以用于所有Spark支持的集群部署模式。

       

    ./bin/spark-submit 
      --class <main-class>
      --master <master-url> 
      --deploy-mode <deploy-mode> 
      --conf <key>=<value> 
      ... # 其他选项
      <application-jar> 
      [application-arguments]

    常用的选项:

          --class: 应用程序(application)入口

          --master: 集群中master节点的URL(e.g. spark://23.195.26.187:7077)

          --deploy-mode: 是否将driver部署到worker节点(cluster模式)或者将driver作为一个外部的client(client模式)

          application-jar:打包的包含相关依赖的jar文件的路径。该地址应该对集群可见,例如hdfs://或者file://地址

          Application-arguments:传送给应用程序main函数的参数。

          Tip1: 在一个与worker机器物理上相近的机器上提交应用程序(例如Standalone模式时EC2集群上的master节点),这种情况client模式更合适。Client模式下,driver直接在spark-submit程序中启动,应用程序相关的输入输出与所在的console相联系。Client模式同样适用spark-shell中的应用程序。

          Tip2: 如果一个应用程序在与那里worker集群的节点上提交(例如本地的笔记本),此时适合使用cluster模式减少driver和executer之间的网络延时。注意,当前cluster模式不适用于standalone集群,Mesos集群或Python程序。

          Tip3: 可以使用 –help 选项查看spark-submit支持的所有选项。

    以下示例给出常用选项:

          

    # 本地运行,占用8个core
    ./bin/spark-submit 
      --class org.apache.spark.examples.SparkPi 
      --master local[8] 
      /path/to/examples.jar 
      100
    
    # 独立部署,client模式
    ./bin/spark-submit 
      --class org.apache.spark.examples.SparkPi 
      --master spark://207.184.161.138:7077 
      --executor-memory 20G 
      --total-executor-cores 100 
      /path/to/examples.jar 
      1000
    
    # 独立部署,cluster模式,异常退出时自动重启
    ./bin/spark-submit 
      --class org.apache.spark.examples.SparkPi 
      --master spark://207.184.161.138:7077 
      --deploy-mode cluster
      --supervise
      --executor-memory 20G 
      --total-executor-cores 100 
      /path/to/examples.jar 
      1000
    
    # YARN上运行,cluster模式
    export HADOOP_CONF_DIR=XXX
    ./bin/spark-submit 
      --class org.apache.spark.examples.SparkPi 
      --master yarn 
      --deploy-mode cluster   # 要client模式就把这个设为client
      --executor-memory 20G 
      --num-executors 50 
      /path/to/examples.jar 
      1000
    
    # 独立部署,运行python
    ./bin/spark-submit 
      --master spark://207.184.161.138:7077 
      examples/src/main/python/pi.py 
      1000
    
    # Mesos集群上运行,cluster模式,异常时自动重启
    ./bin/spark-submit 
      --class org.apache.spark.examples.SparkPi 
      --master mesos://207.184.161.138:7077 
      --deploy-mode cluster
      --supervise
      --executor-memory 20G 
      --total-executor-cores 100 
      http://path/to/examples.jar 
      1000

    5. 监控

          每个driver程序均有一个Web界面,通常运行在4040端口,将会显示正在运行的任务的信息,executors及存储的相关信息。通过使用http://<driver-node>:4040进行访问。

    6. Master地址

          传送到Spark的master的地址可以使用如下格式:                   

         

    Master URL    含义
    local    本地运行Spark,只用1个worker线程(没有并行计算)
    local[K]    本地运行Spark,使用K个worker线程(理论上,最好将这个值设为你机器上CPU core的个数)
    local[*]    本地运行Spark,使用worker线程数同你机器上逻辑CPU core个数
    spark://HOST:PORT    连接到指定的Spark独立部署的集群管理器(Spark standalone cluster)。端口是可以配置的,默认7077。
    mesos://HOST:PORT    连接到指定的Mesos集群。端口号可以配置,默认5050。如果Mesos集群依赖于ZooKeeper,可以使用 mesos://zk://… 来提交,注意 –deploy-mode需要设置为cluster,同时,HOST:PORT应指向 MesosClusterDispatcher.
    yarn    连接到指定的 YARN  集群,使用–deploy-mode来指定 client模式 或是 cluster 模式。YARN集群位置需要通过 $HADOOP_CONF_DIR 或者 $YARN_CONF_DIR 变量来查找。
    yarn-client    YARN client模式的简写,等价于 –master yarn –deploy-mode client
    yarn-cluster    YARN cluster模式的简写,等价于 –master yarn –deploy-mode cluster

    7. 读取配置优先级

          在代码中的SparkConf中的配置参数具有最高优先级,其次是传送spark-submit脚本的参数,最后是配置文件(conf/spark-defaults.conf)中的参数。

          如果不清楚配置参数从何而来,可以使用spark-submit的—verbose选项来打印出细粒度的调度信息。

  • 相关阅读:
    第四周PLECS仿真
    三相异步电动机预习笔记
    第三周PLECS仿真
    《自动化技术中的进给电气传动》 1.3节及《控制系统设计指南》 第一,二章设计指南读书笔记
    第二周 PLECS仿真
    机电传动课程学习
    《实时控制软件设计》2017年度教学总结
    《实时控制软件设计》2017年教学内容
    《机电传动控制》(2017)综合作业
    《机电传动控制》(2017)第十一周作业
  • 原文地址:https://www.cnblogs.com/ilinuxer/p/6759785.html
Copyright © 2011-2022 走看看