zoukankan      html  css  js  c++  java
  • 马尔可夫图像用于安卓恶意图像分类

    ​ 此实验是论文(Byte-level malware classification based on markov images and deep learning)的实现

    先将良性和恶意软件转化为256*256的概率矩阵,代码如下:

    import PIL.Image as Image, os, sys, array, math
    import numpy as np
    
    malware_dir = "D:\android\dataset\drebin-1\"
    kind_dir = "D:\android\dataset\Benign_2016\"
    
    malware_save_dir = "D:\dataset\lunwen markov\malware_f\"
    kind_save_dir = "D:\dataset\lunwen markov\kind_f\"
    
    def file2arr(file_path,file_save_path):			#将文件转换为概率矩阵的方法	
        fileobj = open(file_path, mode = 'rb')
        buffer = array.array('B', fileobj.read())
        array1 = np.zeros((256,256), dtype=np.int)
        
        for i in range(len(buffer)-2):
            j = i+1
            array1[buffer[i]][buffer[j]] += 1
            
        trun_array = np.zeros(256,dtype=np.int)
        for i in range(256):
            for j in range(256):
                trun_array[i] += array1[i][j]
        
        array2 = np.zeros((256,256),dtype=np.float)
        for i in range(256):
            for j in range(256):
                array2[i][j] = array1[i][j]/trun_array[i]
        
        np.save(file_save_path,array1)
      
    count = 1
    for file in os.listdir(malware_dir):							#最终将概率矩阵二维数组存入
        print ("counting the {0} file...".format(str(count)))
        count+=1
        apk_dir = os.path.join(malware_dir,file)
        apk_save_dir = os.path.join(malware_save_dir,file)
        file2arr(apk_dir, apk_save_dir)
       
    count = 1
    for file in os.listdir(kind_dir):
        print ("counting the {0} file...".format(str(count)))
        count+=1
        apk_dir = os.path.join(kind_dir,file)
        apk_save_dir = os.path.join(kind_save_dir,file)
        file2arr(apk_dir, apk_save_dir)
    

    基于cnn的马尔可夫图像分类:

    from tensorflow.keras.utils import to_categorical
    import numpy as np
    import matplotlib.pyplot as plt
    import sys
    import cv2
    from tensorflow.keras import regularizers
    from tensorflow.keras.models import Sequential
    from tensorflow.keras.layers import Dense,Dropout,Activation,Flatten
    from tensorflow.keras.layers import Conv2D,MaxPooling2D,BatchNormalization
    from tensorflow.keras.optimizers import SGD,Adam,RMSprop
    from tensorflow.keras.callbacks import TensorBoard
    import sys
    from sklearn.datasets import load_digits  # 加载手写数字识别数据
    import pylab as pl
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler  # 标准化工具
    from sklearn.svm import LinearSVC
    from sklearn.metrics import classification_report  # 预测结果分析工具
    from tensorflow import keras
    %matplotlib inline
    import os
    os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
    os.environ["CUDA_VISIBLE_DEVICES"] = "0"
    from tensorflow.keras import layers
    from tensorflow.keras import models
    from tensorflow.keras import optimizers
    
    malware_save_dir = "D:\dataset\lunwen markov\malware\"
    kind_save_dir = "D:\dataset\lunwen markov\kind\"
    
    data = []
    count = 1
    for file in os.listdir(malware_save_dir):
        print ("the {0} file...".format(str(count)))
        count+=1
        output = np.load(os.path.join(malware_save_dir,file))
        output2 = keras.preprocessing.image.img_to_array(output)
    #     output2 = np.expand_dims(output, axis=2)                   #扩维
    #     output2 = np.concatenate((output2, output2, output2), axis=-1)
        data.append(output2)
        
    count = 1
    for file in os.listdir(kind_save_dir):
        print ("the {0} file...".format(str(count)))
        count+=1
        output = np.load(os.path.join(kind_save_dir,file))
        output2 = keras.preprocessing.image.img_to_array(output)
    #     output2 = np.expand_dims(output, axis=2)                   #扩维
    #     output2 = np.concatenate((output2, output2, output2), axis=-1)
        data.append(output2)
        
    #标签准备 
    label_mal = [1]*999
    label_kind = [0]*1000
    labels = label_mal + label_kind
    labels = np.array(labels)
    import numpy as np
    index = np.random.permutation(len(labels))
    labels = labels[index]
    data_array = data_array[index]
    
    #网络模型
    model = models.Sequential()
    model.add(layers.Conv2D(32, (3, 3), activation='relu',
                            input_shape=(256, 256, 1)))
    model.add(layers.MaxPooling2D((2, 2)))
    model.add(layers.Conv2D(64, (3, 3), activation='relu'))
    model.add(layers.MaxPooling2D((2, 2)))
    model.add(layers.Conv2D(128, (3, 3), activation='relu'))
    model.add(layers.Conv2D(128, (3, 3), activation='relu'))
    model.add(layers.Conv2D(128, (3, 3), activation='relu'))
    model.add(layers.MaxPooling2D((2, 2)))
    model.add(layers.Conv2D(128, (3, 3), activation='relu'))
    model.add(layers.Conv2D(128, (3, 3), activation='relu'))
    model.add(layers.Conv2D(128, (3, 3), activation='relu'))
    model.add(layers.MaxPooling2D((2, 2)))
    model.add(layers.Flatten())
    model.add(layers.Dropout(0.5))
    model.add(layers.Dense(512, activation='relu'))
    model.add(layers.Dense(1, activation='sigmoid'))
    model.compile(loss='binary_crossentropy',
                  optimizer=optimizers.RMSprop(lr=1e-4),
                  metrics=['acc'])
    
    history = model.fit(data_array, labels, batch_size=32, epochs=50, validation_split=0.2)
    

    除此之外,还参考前几次实验,加入了其他特征,做了多模型实验

    实验结果

    基于多模型的四特征分类结果(api,权限,操作码,马尔可夫图像)

    [0.945, 0.9675, 0.98, 0.9675, 0.9775, 0.98, 0.975, 0.9775, 0.9725, 0.9725, 0.975, 0.975, 0.9775, 0.9775, 0.98, 0.98, 0.9725, 0.975, 0.9775, 0.98, 0.9725, 0.925, 0.9725, 0.9675, 0.9725, 0.9725, 0.985, 0.9775, 0.9725, 0.98, 0.9825, 0.98, 0.97, 0.97, 0.975, 0.9725, 0.9775, 0.9825, 0.975, 0.9775, 0.985, 0.9825, 0.9825, 0.9825, 0.9825, 0.9825, 0.9825, 0.9825, 0.9825, 0.9825]
    

    基于多模型的三特征(api,权限,操作码)分类结果

    [0.9025, 0.9475, 0.95, 0.955, 0.955, 0.925, 0.9575, 0.9525, 0.9675, 0.965, 0.9675, 0.9575, 0.965, 0.96, 0.9675, 0.96, 0.975, 0.9675, 0.965, 0.9625, 0.9675, 0.9675, 0.9675, 0.965, 0.9625, 0.9675, 0.9675, 0.97, 0.9725, 0.97, 0.9725, 0.97, 0.9675, 0.9675, 0.9675, 0.9675, 0.9675, 0.9675, 0.9675, 0.9675, 0.9675, 0.9675, 0.9675, 0.9675, 0.9675, 0.9675, 0.9675, 0.9675, 0.9675, 0.9675]
    

    基于马尔可夫图像的cnn分类结果

    [0.87, 0.8775, 0.9025, 0.895, 0.88, 0.8875, 0.91, 0.8175, 0.8475, 0.9425, 0.89, 0.9375, 0.9475, 0.95, 0.9025, 0.9375, 0.95, 0.935, 0.9325, 0.9525, 0.93, 0.91, 0.945, 0.945, 0.9575, 0.94, 0.9425, 0.9325, 0.9325, 0.945, 0.945, 0.94, 0.945, 0.955, 0.9525, 0.9325, 0.9525, 0.9475, 0.9475, 0.9525, 0.95, 0.945, 0.9525, 0.9575, 0.9475, 0.9375, 0.9525, 0.945, 0.95, 0.9525]
    

    结果图:

    image-20201130210406856

  • 相关阅读:
    源码分析:Java对象的内存分配
    源码分析:Java堆的创建
    Java Main如何被执行?
    HotSpot模板解释器目标代码生成过程源码分析
    Java常量池解析与字符串intern简介
    Java类的连接与初始化 (及2013阿里初始化笔试题解析)
    css中对position的几种定位方式的最佳诠释
    DB2学习笔记
    three.js:Failed to execute 'texImage2D' on 'WebGLRenderingContext解决方案
    线程隔离ThreadLocal
  • 原文地址:https://www.cnblogs.com/iloveacm/p/14063875.html
Copyright © 2011-2022 走看看