zoukankan      html  css  js  c++  java
  • z-score与三通道做代码分类

    ​ 经过上一次的马尔可夫图像做代码分类后。该思想存在两个问题,第一:概率矩阵的方法虽然可以有效的表示转移概率,但是按行归一化的方法忽略了不同行之间的频次差异,导致了一部分信息丢失。第二,因为用概率矩阵的位置表示不同字节间的转换,所以最多只能表示两个字节间的转换,也就是相当于2-gram。因此针对这两个问题,第一,采用z-score的归一化方法。第二,借鉴n步转移矩阵的思想,取(n,n+1),(n,n+2),(n,n+3)三个矩阵,最后将这三个矩阵合为一个三通道图像,作为分类数据。

    ​ 下面是归一化图片代码

    import PIL.Image as Image, os, sys, array, math
    import numpy as np
    from scipy import stats
    
    base_sorce_dir = "D:\dataset\GCI\code_500\code"
    def file2arr(file_path,file_save_path):
        fileobj = open(file_path, mode = 'rb')
        buffer = array.array('B', fileobj.read())
        array1 = np.zeros((256,256), dtype=np.int)
        
        for i in range(len(buffer)-2):
            j = i+1
            array1[buffer[i]][buffer[j]] += 1
            
        array2 = np.reshape(array1,(65536))				#对整个矩阵做z-score
        array3 = stats.zscore(array2)		
        array4 = np.reshape(array3,(256,256))
        np.save(file_save_path,array4)
       
    sorce_list = [os.path.join(base_sorce_dir,str(i)) for i in range(500)]
    
    to_base_dir = "D:\dataset\GCI\code_500\image_2"
    to_list = [os.path.join(to_base_dir,str(i)) for i in range(500)]
    
    for i in range(500):
        count = 1
        for file in os.listdir(sorce_list[i]):
            print ("counting the {0} file...".format(str(count)))
            count+=1
            apk_dir = os.path.join(sorce_list[i],file)
            #创建图像存放文件夹
            if not os.path.exists(to_list[i]):
                os.mkdir(to_list[i])
            apk_save_dir = os.path.join(to_list[i],file)
            
            file2arr(apk_dir, apk_save_dir)
    

    ​ 下面是三通道转换代码,这里还是采用概率矩阵的方法

    import PIL.Image as Image, os, sys, array, math
    import numpy as np
    from scipy import stats
    import numpy as np
    import matplotlib.pyplot as plt
    import sys
    import cv2
    import sys
    
    base_sorce_dir = "D:\dataset\GCI\code_30\code"
    def guiyi(array):
        trun_array = np.zeros(256,dtype=np.int)
        for i in range(256):
            for j in range(256):
                trun_array[i] += array[i][j]
        
        array2 = np.zeros((256,256),dtype=np.float)
        for i in range(256):
            for j in range(256):
                if(trun_array[i]!=0):
                    array2[i][j] = array[i][j]/trun_array[i]
        
        return array2
    def file2arr(file_path,file_save_path):
        fileobj = open(file_path, mode = 'rb')
        buffer = array.array('B', fileobj.read())
        
        array1 = np.zeros((256,256), dtype=np.int)
        for i in range(len(buffer)-2):
            j = i+1
            array1[buffer[i]][buffer[j]] += 1
        
        array2 = np.zeros((256,256), dtype=np.int)
        for i in range(len(buffer)-3):
            j = i+2
            array2[buffer[i]][buffer[j]] += 1
            
        array3 = np.zeros((256,256), dtype=np.int)
        for i in range(len(buffer)-3):
            j = i+3
            array3[buffer[i]][buffer[j]] += 1
    
        array1 = guiyi(array1)
        array2 = guiyi(array2)
        array3 = guiyi(array3)
        
        array1 = keras.preprocessing.image.img_to_array(array1)
        array2 = keras.preprocessing.image.img_to_array(array2)
        array3 = keras.preprocessing.image.img_to_array(array3)
        array4 = np.concatenate((array1, array2, array3), axis=-1)
        
        np.save(file_save_path,array)
    sorce_list = [os.path.join(base_sorce_dir,str(i)) for i in range(29)]
    to_base_dir = "D:\dataset\GCI\code_30\image_3"
    to_list = [os.path.join(to_base_dir,str(i)) for i in range(29)]
    for i in range(30):
        count = 1
        for file in os.listdir(sorce_list[i]):
            print ("counting the {0} file...".format(str(count)))
            count+=1
            apk_dir = os.path.join(sorce_list[i],file)
            #创建图像存放文件夹
            if not os.path.exists(to_list[i]):
                os.mkdir(to_list[i])
            apk_save_dir = os.path.join(to_list[i],file)
            
            file2arr(apk_dir, apk_save_dir)
    

    ​ 这里比较了z-score方法和原归一化方法的精度,如下面两表,在最后附有图。

    z-score做29分类

    [0.6043557, 0.7513612, 0.80217785, 0.8330309, 0.9026013, 0.87598306, 0.9044162, 0.9304295, 0.9286146, 0.9461585, 0.9425287, 0.9419238, 0.9516032, 0.9443436, 0.95583785, 0.9721718, 0.9643073, 0.95886266, 0.9643073, 0.9649123, 0.9552329, 0.97096187, 0.9673321, 0.97338176, 0.97338176, 0.97096187, 0.97035694, 0.97338176, 0.97096187, 0.9552329, 0.97096187, 0.96249247, 0.97096187, 0.9739867, 0.9739867, 0.9770115, 0.9727768, 0.9751966, 0.98064125, 0.9745917, 0.97338176, 0.9727768, 0.9721718, 0.9751966, 0.9727768, 0.9764065, 0.97943133, 0.96854204, 0.9751966, 0.9721718]
    

    马尔可夫图像29分类结果

    [0.73260736, 0.82637626, 0.85904413, 0.9032063, 0.91167575, 0.9280097, 0.93466425, 0.94373864, 0.9516032, 0.9503932, 0.9516032, 0.9503932, 0.9600726, 0.9552329, 0.95886266, 0.9630974, 0.9600726, 0.96249247, 0.9655172, 0.9655172, 0.9509982, 0.9649123, 0.95462793, 0.9643073, 0.9618875, 0.96067756, 0.96672714, 0.9661222, 0.9643073, 0.9649123, 0.96249247, 0.9679371, 0.9630974, 0.9679371, 0.969147, 0.9673321, 0.9643073, 0.97035694, 0.96672714, 0.97156686, 0.9673321, 0.96975195, 0.969147, 0.97035694, 0.9643073, 0.97035694, 0.9727768, 0.97156686, 0.96854204, 0.97096187]
    

    ​ 对于三通道图像,除了采用原有模型,还采用了VGG16模型分类,vgg分类代码以及两次的精度如下

    import PIL.Image as Image, os, sys, array, math
    import numpy as np
    from scipy import stats
    
    from tensorflow.keras.utils import to_categorical
    import numpy as np
    import matplotlib.pyplot as plt
    import sys
    import cv2
    from tensorflow.keras import regularizers
    from tensorflow.keras.models import Sequential
    from tensorflow.keras.layers import Dense,Dropout,Activation,Flatten
    from tensorflow.keras.layers import Conv2D,MaxPooling2D,BatchNormalization
    from tensorflow.keras.optimizers import SGD,Adam,RMSprop
    from tensorflow.keras.callbacks import TensorBoard
    from sklearn.datasets import load_digits  # 加载手写数字识别数据
    import pylab as pl
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler  # 标准化工具
    from sklearn.svm import LinearSVC
    from sklearn.metrics import classification_report  # 预测结果分析工具
    
    from tensorflow import keras
    %matplotlib inline
    import os
    
    os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
    
    os.environ["CUDA_VISIBLE_DEVICES"] = "0"
    from tensorflow.keras import layers
    from tensorflow.keras import models
    from tensorflow.keras import optimizers
    
    def guiyi(array):
        trun_array = np.zeros(256,dtype=np.int)
        for i in range(256):
            for j in range(256):
                trun_array[i] += array[i][j]
        
        array2 = np.zeros((256,256),dtype=np.float)
        for i in range(256):
            for j in range(256):
                if(trun_array[i]!=0):
                    array2[i][j] = array[i][j]/trun_array[i]
        
        return array2
    def file2arr(file_path):
        fileobj = open(file_path, mode = 'rb')
        buffer = array.array('B', fileobj.read())
        
        array1 = np.zeros((256,256), dtype=np.int)
        for i in range(len(buffer)-2):
            j = i+1
            array1[buffer[i]][buffer[j]] += 1
        
        array2 = np.zeros((256,256), dtype=np.int)
        for i in range(len(buffer)-3):
            j = i+2
            array2[buffer[i]][buffer[j]] += 1
            
        array3 = np.zeros((256,256), dtype=np.int)
        for i in range(len(buffer)-3):
            j = i+3
            array3[buffer[i]][buffer[j]] += 1
    
        array1 = guiyi(array1)
        array2 = guiyi(array2)
        array3 = guiyi(array3)
        
        array1 = keras.preprocessing.image.img_to_array(array1)
        array2 = keras.preprocessing.image.img_to_array(array2)
        array3 = keras.preprocessing.image.img_to_array(array3)
        array4 = np.concatenate((array1, array2, array3), axis=-1)
        
    #     np.save(file_save_path,array)
        return array4
    leibie = 29
    to_base_dir = "D:\dataset\GCI\code_30\code"
    to_list = [os.path.join(to_base_dir,str(i)) for i in range(leibie)]
    data = []
    labels = []
    count = 0
    for to_dir in to_list:
        print (to_dir)
        for file in os.listdir(to_dir):
            output = file2arr(os.path.join(to_dir,file))
    #         output2 = keras.preprocessing.image.img_to_array(output)
        #     output2 = np.expand_dims(output, axis=2)                   #扩维
        #     output2 = np.concatenate((output2, output2, output2), axis=-1)
            data.append(output)
            labels.append(count)
        count+=1
    data_array = np.array(data)
    labels = np.array(labels)
    #打乱数据
    import numpy as np
    index = np.random.permutation(len(labels))
    
    labels = labels[index]
    data_array = data_array[index]
    #网络模型
    from tensorflow.keras.layers import Convolution2D, MaxPooling2D, Flatten, Dropout, Dense, Activation
    from tensorflow.keras.optimizers import Adam
    from tensorflow.keras import applications
    from tensorflow.keras.models import Model
    
    base_model = applications.VGG16(weights='imagenet', include_top=False, input_shape=(256, 256, 3))
    add_model = Sequential()
    add_model.add(Flatten(input_shape=base_model.output_shape[1:]))
    add_model.add(Dense(256, activation='relu'))
    add_model.add(Dense(29, activation='softmax'))
    model = Model(inputs=base_model.input, outputs=add_model(base_model.output))
    model.compile(loss='sparse_categorical_crossentropy', optimizer=optimizers.SGD(lr=1e-4, momentum=0.9),
                metrics=['accuracy'])
    
    history = model.fit(data_array, labels, batch_size=32, epochs=50, validation_split=0.2)
    

    三通道图像29分类(原模型)

    [0.22141561, 0.45735028, 0.5856019, 0.6678766, 0.70840895, 0.70780396, 0.78100425, 0.77979434, 0.8336358, 0.82758623, 0.8215366, 0.8717483, 0.877193, 0.90804595, 0.8844525, 0.85904413, 0.9159105, 0.8892922, 0.9274047, 0.92558986, 0.8814277, 0.91167575, 0.93768907, 0.94494855, 0.9419238, 0.9509982, 0.9503932, 0.9183303, 0.9497883, 0.9509982, 0.93163943, 0.9267998, 0.9443436, 0.9310345, 0.9249849, 0.95462793, 0.9425287, 0.9552329, 0.9522081, 0.94555354, 0.95825773, 0.9425287, 0.954023, 0.9522081, 0.9165154, 0.95462793, 0.95583785, 0.9503932, 0.95462793, 0.95583785]
    

    三通道图像29分类(VGG16 )

    [0.03448276, 0.2552934, 0.62068963, 0.7616455, 0.77918935, 0.8215366, 0.8784029, 0.89897156, 0.9019964, 0.9140956, 0.9201452, 0.9165154, 0.9032063, 0.9183303, 0.938294, 0.93587416, 0.9413188, 0.9425287, 0.9516032, 0.96249247, 0.9165154, 0.9649123, 0.96672714, 0.969147, 0.96672714, 0.9673321, 0.9679371, 0.9679371, 0.9673321, 0.96672714, 0.96672714, 0.96672714, 0.9673321, 0.96672714, 0.9661222, 0.9673321, 0.96672714, 0.9679371, 0.9679371, 0.9673321, 0.9679371, 0.9673321, 0.9679371, 0.9673321, 0.9679371, 0.9673321, 0.9673321, 0.9679371, 0.9679371, 0.9673321]
    

    对比图

    Figure_1

    可以看出,z-score确实对分类精度有微小的提升,而三通道反而有所下降,可能是三个通道之间有所冲突

  • 相关阅读:
    canvas 方法参数智能提示
    layui 关闭弹窗,刷新父窗体页面
    UI设计灵感集结地
    Java Poi 读取excel 对所有类型进行处理
    jeecg v3.6.6 excel导入js方法完善
    父、子页面之间页面元素的获取,方法的调用
    ps载入渐变
    ps载入画笔
    做设计常用的素材下载网站
    色彩搭配神器
  • 原文地址:https://www.cnblogs.com/iloveacm/p/14184092.html
Copyright © 2011-2022 走看看