zoukankan      html  css  js  c++  java
  • 如何确定怎样进一步提升学习算法的性能

      当我们成功实现一个机器学习算法并将其用于解决实际问题时,常常会发现它的性能

    (分类、回归准确度)达不到我们足够满意的状态。在这种情况下,我们有以下六种选项

    来提高当前算法的性能

    1 增加training set的数目  这种方法适合模型发生过拟合的情况

    2 减小feature的数量(使用更少feature)  这种方法适合模型发生过拟合

    3 增加feature的数量(使用更多feature)  这种方法适合模型发生欠拟合

    4 增加多项式feature   这种方法适合发生欠拟合的模型

    5 减小λ  适合欠拟合的模型

    6 增大λ  适合过拟合的模型

    注意以上几点,就可以避免由于方向选择的不对造成的时间浪费。

    对神经网络而言,一般说来,层数多/每层节点数多的复杂神经网络的性能往往比简答的神经网络性能好。

    如果一个神经网络欠拟合的话,可以考虑增加层数、增加每层节点数、减小λ。

    反之,如果是过拟合的话,最佳选项是增大λ。

  • 相关阅读:
    cp文件夹
    当@PathVariable遇上中文和点
    frameset框架样式 加边框
    页面显示滑动条样式
    109.110.100.56 samba用户名 PAS, 密码 111111
    后台访问记录
    后台处理excel下载输出流
    ul li排版 左右对齐
    社保卡补办
    删除表 (truncate 、delete 、drop)
  • 原文地址:https://www.cnblogs.com/instant7/p/4140554.html
Copyright © 2011-2022 走看看