zoukankan      html  css  js  c++  java
  • Best Time to Buy and Sell Stock III 解答

    Question

    Say you have an array for which the ith element is the price of a given stock on day i.

    Design an algorithm to find the maximum profit. You may complete at most two transactions.

    Note:
    You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).

    Solution

    This problem can be solved by "divide and conquer". We can use left[i] array to track maximum profit for transactions before i (including i), and right[i + 1] to track maximum profit for transcations after i.

    Prices: 1 4 5 7 6 3 2 9
    left = [0, 3, 4, 6, 6, 6, 6, 8]
    right= [8, 7, 7, 7, 7, 7, 7, 0]

     Time complexity O(n), space cost O(n).

     1 public class Solution {
     2     public int maxProfit(int[] prices) {
     3         if (prices == null || prices.length < 2)
     4             return 0;
     5         int length = prices.length, min = prices[0], max = prices[length - 1], tmpProfit = 0;
     6         int[] leftProfits = new int[length];
     7         leftProfits[0] = 0;
     8         int[] rightProfits = new int[length];
     9         rightProfits[length - 1] = 0;
    10         // Calculat left side profits
    11         for (int i = 1; i < length; i++) {
    12             if (prices[i] > min)
    13                 tmpProfit = Math.max(tmpProfit, prices[i] - min);
    14             else
    15                 min = prices[i];
    16             leftProfits[i] = tmpProfit;
    17         }
    18         // Calculate right side profits
    19         tmpProfit = 0;
    20         for (int j = length - 2; j >= 0; j--) {
    21             if (prices[j] < max)
    22                 tmpProfit = Math.max(tmpProfit, max - prices[j]);
    23             else
    24                 max = prices[j];
    25             rightProfits[j] = tmpProfit;
    26         }
    27         // Sum up
    28         int result = Integer.MIN_VALUE;
    29         for (int i = 0; i < length - 1; i++)
    30             result = Math.max(result, leftProfits[i] + rightProfits[i + 1]);
    31         result = Math.max(result, leftProfits[length - 1]);
    32         return result;
    33     }
    34 }
  • 相关阅读:
    【扩展】1. PHP 大括号{} 的使用
    preg_replace 中修正符 e 的解析
    terminal 修改终端显示的名字
    find 命令详解
    OSI 7层结构 粗认识
    vi 全解析
    awk 学习笔记
    scp 复制远程文件 文件带空格 处理
    更新博客地址啦!!!
    ubuntu16.04安装NVIDIA驱动遇到的问题
  • 原文地址:https://www.cnblogs.com/ireneyanglan/p/4825130.html
Copyright © 2011-2022 走看看