zoukankan      html  css  js  c++  java
  • Best Time to Buy and Sell Stock III 解答

    Question

    Say you have an array for which the ith element is the price of a given stock on day i.

    Design an algorithm to find the maximum profit. You may complete at most two transactions.

    Note:
    You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).

    Solution

    This problem can be solved by "divide and conquer". We can use left[i] array to track maximum profit for transactions before i (including i), and right[i + 1] to track maximum profit for transcations after i.

    Prices: 1 4 5 7 6 3 2 9
    left = [0, 3, 4, 6, 6, 6, 6, 8]
    right= [8, 7, 7, 7, 7, 7, 7, 0]

     Time complexity O(n), space cost O(n).

     1 public class Solution {
     2     public int maxProfit(int[] prices) {
     3         if (prices == null || prices.length < 2)
     4             return 0;
     5         int length = prices.length, min = prices[0], max = prices[length - 1], tmpProfit = 0;
     6         int[] leftProfits = new int[length];
     7         leftProfits[0] = 0;
     8         int[] rightProfits = new int[length];
     9         rightProfits[length - 1] = 0;
    10         // Calculat left side profits
    11         for (int i = 1; i < length; i++) {
    12             if (prices[i] > min)
    13                 tmpProfit = Math.max(tmpProfit, prices[i] - min);
    14             else
    15                 min = prices[i];
    16             leftProfits[i] = tmpProfit;
    17         }
    18         // Calculate right side profits
    19         tmpProfit = 0;
    20         for (int j = length - 2; j >= 0; j--) {
    21             if (prices[j] < max)
    22                 tmpProfit = Math.max(tmpProfit, max - prices[j]);
    23             else
    24                 max = prices[j];
    25             rightProfits[j] = tmpProfit;
    26         }
    27         // Sum up
    28         int result = Integer.MIN_VALUE;
    29         for (int i = 0; i < length - 1; i++)
    30             result = Math.max(result, leftProfits[i] + rightProfits[i + 1]);
    31         result = Math.max(result, leftProfits[length - 1]);
    32         return result;
    33     }
    34 }
  • 相关阅读:
    bzoj 4583 购物
    hdu 4694 支配树
    弦图问题初步
    第一次省选总结
    初学kd树
    省选前集训 lca
    bzoj 3282 Tree
    bzoj 2157 旅游
    二分图匹配(匈牙利算法模板)
    最大流(模板)
  • 原文地址:https://www.cnblogs.com/ireneyanglan/p/4825130.html
Copyright © 2011-2022 走看看