(referrence: ProgramCreek)
The key to solve inorder traversal of binary tree includes the following:
- The order of "inorder" is: left child -> parent -> right child
- Use a stack to track nodes
- Understand when to push node into the stack and when to pop node out of the stack
Note that inorder traversal of BST is an ascending array.
Algorithm 1 -- Recursive
1 public class Solution { 2 List<Integer> result = new ArrayList<Integer>(); 3 4 public List<Integer> inorderTraversal(TreeNode root) { 5 if(root !=null){ 6 helper(root); 7 } 8 9 return result; 10 } 11 12 public void helper(TreeNode p){ 13 if(p.left!=null) 14 helper(p.left); 15 16 result.add(p.val); 17 18 if(p.right!=null) 19 helper(p.right); 20 } 21 }
Algorithm 2 -- Iterative
1 public class Solution { 2 public ArrayList<Integer> inorderTraversal(TreeNode root) { 3 // IMPORTANT: Please reset any member data you declared, as 4 // the same Solution instance will be reused for each test case. 5 ArrayList<Integer> lst = new ArrayList<Integer>(); 6 7 if(root == null) 8 return lst; 9 10 Stack<TreeNode> stack = new Stack<TreeNode>(); 11 //define a pointer to track nodes 12 TreeNode p = root; 13 14 while(!stack.empty() || p != null){ 15 16 // if it is not null, push to stack 17 //and go down the tree to left 18 if(p != null){ 19 stack.push(p); 20 p = p.left; 21 22 // if no left child 23 // pop stack, process the node 24 // then let p point to the right 25 }else{ 26 TreeNode t = stack.pop(); 27 lst.add(t.val); 28 p = t.right; 29 } 30 } 31 32 return lst; 33 } 34 }