Question
Say you have an array for which the ith element is the price of a given stock on day i.
Design an algorithm to find the maximum profit. You may complete at most k transactions.
For example, given prices = [4,4,6,1,1,4,2,5], and k = 2, return 6.
Answer
用DP解答。
local[i][j] 表示0~i的数,最多j次交易,并且最后一次交易必须包含prices[j](即最后一天必须卖出),收益最大值。
global[i][j] 表示0~i的数,最多j次交易,收益最大值。
diff = prices[i] - prices[i-1] local[i][j] = max(global[i-1][j-1] + max(diff,0),local[i-1][j]+diff) global[i][j] = max(local[i][j], global[i-1][j])
local[i-1][j] + diff 表示第i-1天,买进prices[i-1],第i天卖出。
由于local[i-1][j]表示最后一次交易必须包含prices[i-1],即prices[i-1]必须卖出。所以可以把第i-1天的交易和第i天的交易合并,即成了最多j次交易,最后一天交易必须卖出prices[i]。 global[i-1][j-1] 表示前i-1天,最多j-1次交易。最后一天比较diff,如果diff>0,则第i-1天买进,第i天卖出;如果diff<0,则第i天买进,第i天卖出。
class Solution { /** * @param k: An integer * @param prices: Given an integer array * @return: Maximum profit */ public int maxProfit(int k, int[] prices) { // write your code here if (k == 0) { return 0; } if (k >= prices.length / 2) { int profit = 0; for (int i = 1; i < prices.length; i++) { if (prices[i] > prices[i - 1]) { profit += prices[i] - prices[i - 1]; } } return profit; } int n = prices.length; int[][] mustsell = new int[n + 1][n + 1]; // mustSell[i][j] 表示前i天,至多进行j次交易,第i天必须sell的最大获益 int[][] globalbest = new int[n + 1][n + 1]; // globalbest[i][j] 表示前i天,至多进行j次交易,第i天可以不sell的最大获益 mustsell[0][0] = globalbest[0][0] = 0; for (int i = 1; i <= k; i++) { mustsell[0][i] = globalbest[0][i] = 0; } for (int i = 1; i < n; i++) { int gainorlose = prices[i] - prices[i - 1]; mustsell[i][0] = 0; for (int j = 1; j <= k; j++) { mustsell[i][j] = Math.max(globalbest[(i - 1)][j - 1] + gainorlose, mustsell[(i - 1)][j] + gainorlose); globalbest[i][j] = Math.max(globalbest[(i - 1)][j], mustsell[i ][j]); } } return globalbest[(n - 1)][k]; } };