zoukankan      html  css  js  c++  java
  • 网络时间同步

    从NTP服务器获取时间同步客户端:

     1 import java.io.IOException;
     2 import java.io.InterruptedIOException;
     3 import java.net.ConnectException;
     4 import java.net.DatagramPacket;
     5 import java.net.DatagramSocket;
     6 import java.net.InetAddress;
     7 import java.net.NoRouteToHostException;
     8 import java.net.UnknownHostException;
     9 
    10 public class TestNtp{
    11 
    12     public static void main(String[] args){
    13         int retry = 2;
    14         int port = 123;
    15         int timeout = 3000;
    16 
    17         // get the address and NTP address request
    18         //
    19         InetAddress ipv4Addr = null;
    20         try {
    21             ipv4Addr = InetAddress.getByName("203.117.180.36");//更多NTP时间服务器参考附注
    22                } catch (UnknownHostException e1) {
    23             e1.printStackTrace();
    24         }
    25 
    26         int serviceStatus = -1;
    27         DatagramSocket socket = null;
    28         long responseTime = -1;
    29         try {
    30             socket = new DatagramSocket();
    31             socket.setSoTimeout(timeout); // will force the
    32             // InterruptedIOException
    33 
    34             for (int attempts = 0; attempts <= retry && serviceStatus != 1; attempts++) {
    35                 try {
    36                     // Send NTP request
    37                     //
    38                     byte[] data = new NtpMessage().toByteArray();
    39                     DatagramPacket outgoing = new DatagramPacket(data, data.length, ipv4Addr, port);
    40                     long sentTime = System.currentTimeMillis();
    41                     socket.send(outgoing);
    42 
    43                     // Get NTP Response
    44                     //
    45                     // byte[] buffer = new byte[512];
    46                     DatagramPacket incoming = new DatagramPacket(data, data.length);
    47                     socket.receive(incoming);
    48                     responseTime = System.currentTimeMillis() - sentTime;
    49                     double destinationTimestamp = (System.currentTimeMillis() / 1000.0) + 2208988800.0;
    50                     //这里要加2208988800,是因为获得到的时间是格林尼治时间,所以要变成东八区的时间,否则会与与北京时间有8小时的时差
    51 
    52                     // Validate NTP Response
    53                     // IOException thrown if packet does not decode as expected.
    54                     NtpMessage msg = new NtpMessage(incoming.getData());
    55                     double localClockOffset = ((msg.receiveTimestamp - msg.originateTimestamp) + (msg.transmitTimestamp - destinationTimestamp)) / 2;
    56 
    57                     System.out.println("poll: valid NTP request received the local clock offset is " + localClockOffset + ", responseTime= " + responseTime + "ms");
    58                     System.out.println("poll: NTP message : " + msg.toString());
    59                     serviceStatus = 1;
    60                 } catch (InterruptedIOException ex) {
    61                     // Ignore, no response received.
    62                 }
    63             }
    64         } catch (NoRouteToHostException e) {
    65             System.out.println("No route to host exception for address: " + ipv4Addr);
    66         } catch (ConnectException e) {
    67             // Connection refused. Continue to retry.
    68             e.fillInStackTrace();
    69             System.out.println("Connection exception for address: " + ipv4Addr);
    70         } catch (IOException ex) {
    71             ex.fillInStackTrace();
    72             System.out.println("IOException while polling address: " + ipv4Addr);
    73         } finally {
    74             if (socket != null)
    75                 socket.close();
    76         }
    77 
    78         // Store response time if available
    79         //
    80         if (serviceStatus == 1) {
    81             System.out.println("responsetime=="+responseTime);
    82         }
    83 
    84         
    85     }
    86 }
    View Code

    协议解析模型

      1 import java.text.DecimalFormat;
      2 import java.text.SimpleDateFormat;
      3 import java.util.Date;
      4 
      5 public class NtpMessage {
      6     /** *//**
      7      * This is a two-bit code warning of an impending leap second to be
      8      * inserted/deleted in the last minute of the current day. It''s values may
      9      * be as follows:
     10      * 
     11      * Value Meaning ----- ------- 0 no warning 1 last minute has 61 seconds 2
     12      * last minute has 59 seconds) 3 alarm condition (clock not synchronized)
     13      */
     14     public byte leapIndicator = 0;
     15 
     16     /** *//**
     17      * This value indicates the NTP/SNTP version number. The version number is 3
     18      * for Version 3 (IPv4 only) and 4 for Version 4 (IPv4, IPv6 and OSI). If
     19      * necessary to distinguish between IPv4, IPv6 and OSI, the encapsulating
     20      * context must be inspected.
     21      */
     22     public byte version = 3;
     23 
     24     /** *//**
     25      * This value indicates the mode, with values defined as follows:
     26      * 
     27      * Mode Meaning ---- ------- 0 reserved 1 symmetric active 2 symmetric
     28      * passive 3 client 4 server 5 broadcast 6 reserved for NTP control message
     29      * 7 reserved for private use
     30      * 
     31      * In unicast and anycast modes, the client sets this field to 3 (client) in
     32      * the request and the server sets it to 4 (server) in the reply. In
     33      * multicast mode, the server sets this field to 5 (broadcast).
     34      */
     35     public byte mode = 0;
     36 
     37     /** *//**
     38      * This value indicates the stratum level of the local clock, with values
     39      * defined as follows:
     40      * 
     41      * Stratum Meaning ---------------------------------------------- 0
     42      * unspecified or unavailable 1 primary reference (e.g., radio clock) 2-15
     43      * secondary reference (via NTP or SNTP) 16-255 reserved
     44      */
     45     public short stratum = 0;
     46 
     47     /** *//**
     48      * This value indicates the maximum interval between successive messages, in
     49      * seconds to the nearest power of two. The values that can appear in this
     50      * field presently range from 4 (16 s) to 14 (16284 s); however, most
     51      * applications use only the sub-range 6 (64 s) to 10 (1024 s).
     52      */
     53     public byte pollInterval = 0;
     54 
     55     /** *//**
     56      * This value indicates the precision of the local clock, in seconds to the
     57      * nearest power of two. The values that normally appear in this field
     58      * range from -6 for mains-frequency clocks to -20 for microsecond clocks
     59      * found in some workstations.
     60      */
     61     public byte precision = 0;
     62 
     63     /** *//**
     64      * This value indicates the total roundtrip delay to the primary reference
     65      * source, in seconds. Note that this variable can take on both positive and
     66      * negative values, depending on the relative time and frequency offsets.
     67      * The values that normally appear in this field range from negative values
     68      * of a few milliseconds to positive values of several hundred milliseconds.
     69      */
     70     public double rootDelay = 0;
     71 
     72     /** *//**
     73      * This value indicates the nominal error relative to the primary reference
     74      * source, in seconds. The values that normally appear in this field range
     75      * from 0 to several hundred milliseconds.
     76      */
     77     public double rootDispersion = 0;
     78 
     79     /** *//**
     80      * This is a 4-byte array identifying the particular reference source. In
     81      * the case of NTP Version 3 or Version 4 stratum-0 (unspecified) or
     82      * stratum-1 (primary) servers, this is a four-character ASCII string, left
     83      * justified and zero padded to 32 bits. In NTP Version 3 secondary servers,
     84      * this is the 32-bit IPv4 address of the reference source. In NTP Version 4
     85      * secondary servers, this is the low order 32 bits of the latest transmit
     86      * timestamp of the reference source. NTP primary (stratum 1) servers should
     87      * set this field to a code identifying the external reference source
     88      * according to the following list. If the external reference is one of
     89      * those listed, the associated code should be used. Codes for sources not
     90      * listed can be contrived as appropriate.
     91      * 
     92      * Code External Reference Source ---- ------------------------- LOCL
     93      * uncalibrated local clock used as a primary reference for a subnet without
     94      * external means of synchronization PPS atomic clock or other
     95      * pulse-per-second source individually calibrated to national standards
     96      * ACTS NIST dialup modem service USNO USNO modem service PTB PTB (Germany)
     97      * modem service TDF Allouis (France) Radio 164 kHz DCF Mainflingen
     98      * (Germany) Radio 77.5 kHz MSF Rugby (UK) Radio 60 kHz WWV Ft. Collins (US)
     99      * Radio 2.5, 5, 10, 15, 20 MHz WWVB Boulder (US) Radio 60 kHz WWVH Kaui
    100      * Hawaii (US) Radio 2.5, 5, 10, 15 MHz CHU Ottawa (Canada) Radio 3330,
    101      * 7335, 14670 kHz LORC LORAN-C radionavigation system OMEG OMEGA
    102      * radionavigation system GPS Global Positioning Service GOES Geostationary
    103      * Orbit Environment Satellite
    104      */
    105     public byte[] referenceIdentifier = { 0, 0, 0, 0 };
    106 
    107     /** *//**
    108      * This is the time at which the local clock was last set or corrected, in
    109      * seconds since 00:00 1-Jan-1900.
    110      */
    111     public double referenceTimestamp = 0;
    112 
    113     /** *//**
    114      * This is the time at which the request departed the client for the server,
    115      * in seconds since 00:00 1-Jan-1900.
    116      */
    117     public double originateTimestamp = 0;
    118 
    119     /** *//**
    120      * This is the time at which the request arrived at the server, in seconds
    121      * since 00:00 1-Jan-1900.
    122      */
    123     public double receiveTimestamp = 0;
    124 
    125     /** *//**
    126      * This is the time at which the reply departed the server for the client,
    127      * in seconds since 00:00 1-Jan-1900.
    128      */
    129     public double transmitTimestamp = 0;
    130 
    131     /** *//**
    132      * Constructs a new NtpMessage from an array of bytes.
    133      */
    134     public NtpMessage(byte[] array) {
    135         // See the packet format diagram in RFC 2030 for details
    136         leapIndicator = (byte) ((array[0] >> 6) & 0x3);
    137         version = (byte) ((array[0] >> 3) & 0x7);
    138         mode = (byte) (array[0] & 0x7);
    139         stratum = unsignedByteToShort(array[1]);
    140         pollInterval = array[2];
    141         precision = array[3];
    142 
    143         rootDelay = (array[4] * 256.0) + unsignedByteToShort(array[5]) + (unsignedByteToShort(array[6]) / 256.0) + (unsignedByteToShort(array[7]) / 65536.0);
    144 
    145         rootDispersion = (unsignedByteToShort(array[8]) * 256.0) + unsignedByteToShort(array[9]) + (unsignedByteToShort(array[10]) / 256.0) + (unsignedByteToShort(array[11]) / 65536.0);
    146 
    147         referenceIdentifier[0] = array[12];
    148         referenceIdentifier[1] = array[13];
    149         referenceIdentifier[2] = array[14];
    150         referenceIdentifier[3] = array[15];
    151 
    152         referenceTimestamp = decodeTimestamp(array, 16);
    153         originateTimestamp = decodeTimestamp(array, 24);
    154         receiveTimestamp = decodeTimestamp(array, 32);
    155         transmitTimestamp = decodeTimestamp(array, 40);
    156     }
    157 
    158     /** *//**
    159      * Constructs a new NtpMessage
    160      */
    161     public NtpMessage(byte leapIndicator, byte version, byte mode, short stratum, byte pollInterval, byte precision, double rootDelay, double rootDispersion, byte[] referenceIdentifier, double referenceTimestamp, double originateTimestamp, double receiveTimestamp, double transmitTimestamp) {
    162         // ToDo: Validity checking
    163         this.leapIndicator = leapIndicator;
    164         this.version = version;
    165         this.mode = mode;
    166         this.stratum = stratum;
    167         this.pollInterval = pollInterval;
    168         this.precision = precision;
    169         this.rootDelay = rootDelay;
    170         this.rootDispersion = rootDispersion;
    171         this.referenceIdentifier = referenceIdentifier;
    172         this.referenceTimestamp = referenceTimestamp;
    173         this.originateTimestamp = originateTimestamp;
    174         this.receiveTimestamp = receiveTimestamp;
    175         this.transmitTimestamp = transmitTimestamp;
    176     }
    177 
    178     /** *//**
    179      * Constructs a new NtpMessage in client -> server mode, and sets the
    180      * transmit timestamp to the current time.
    181      */
    182     public NtpMessage() {
    183         // Note that all the other member variables are already set with
    184         // appropriate default values.
    185         this.mode = 3;
    186         this.transmitTimestamp = (System.currentTimeMillis() / 1000.0) + 2208988800.0;
    187     }
    188 
    189     /** *//**
    190      * This method constructs the data bytes of a raw NTP packet.
    191      */
    192     public byte[] toByteArray() {
    193         // All bytes are automatically set to 0
    194         byte[] p = new byte[48];
    195 
    196         p[0] = (byte) (leapIndicator << 6 | version << 3 | mode);
    197         p[1] = (byte) stratum;
    198         p[2] = (byte) pollInterval;
    199         p[3] = (byte) precision;
    200 
    201         // root delay is a signed 16.16-bit FP, in Java an int is 32-bits
    202         int l = (int) (rootDelay * 65536.0);
    203         p[4] = (byte) ((l >> 24) & 0xFF);
    204         p[5] = (byte) ((l >> 16) & 0xFF);
    205         p[6] = (byte) ((l >> 8) & 0xFF);
    206         p[7] = (byte) (l & 0xFF);
    207 
    208         // root dispersion is an unsigned 16.16-bit FP, in Java there are no
    209         // unsigned primitive types, so we use a long which is 64-bits
    210         long ul = (long) (rootDispersion * 65536.0);
    211         p[8] = (byte) ((ul >> 24) & 0xFF);
    212         p[9] = (byte) ((ul >> 16) & 0xFF);
    213         p[10] = (byte) ((ul >> 8) & 0xFF);
    214         p[11] = (byte) (ul & 0xFF);
    215 
    216         p[12] = referenceIdentifier[0];
    217         p[13] = referenceIdentifier[1];
    218         p[14] = referenceIdentifier[2];
    219         p[15] = referenceIdentifier[3];
    220 
    221         encodeTimestamp(p, 16, referenceTimestamp);
    222         encodeTimestamp(p, 24, originateTimestamp);
    223         encodeTimestamp(p, 32, receiveTimestamp);
    224         encodeTimestamp(p, 40, transmitTimestamp);
    225 
    226         return p;
    227     }
    228 
    229     /** *//**
    230      * Returns a string representation of a NtpMessage
    231      */
    232     public String toString() {
    233         String precisionStr = new DecimalFormat("0.#E0").format(Math.pow(2, precision));
    234         return "Leap indicator: " + leapIndicator + " " + "Version: " + version + " " + "Mode: " + mode + " " + "Stratum: " + stratum + " " + "Poll: " + pollInterval + " " + "Precision: " + precision + " (" + precisionStr + " seconds) " + "Root delay: " + new DecimalFormat("0.00").format(rootDelay * 1000) + " ms " + "Root dispersion: " + new DecimalFormat("0.00").format(rootDispersion * 1000) + " ms " + "Reference identifier: " + referenceIdentifierToString(referenceIdentifier, stratum, version) + " " + "Reference timestamp: " + timestampToString(referenceTimestamp) + " " + "Originate timestamp: " + timestampToString(originateTimestamp) + " " + "Receive timestamp:   " + timestampToString(receiveTimestamp) + " " + "Transmit timestamp: " + timestampToString(transmitTimestamp);
    235     }
    236 
    237     /** *//**
    238      * Converts an unsigned byte to a short. By default, Java assumes that a
    239      * byte is signed.
    240      */
    241     public static short unsignedByteToShort(byte b) {
    242         if ((b & 0x80) == 0x80)
    243             return (short) (128 + (b & 0x7f));
    244         else
    245             return (short) b;
    246     }
    247 
    248     /** *//**
    249      * Will read 8 bytes of a message beginning at <code>pointer</code> and
    250      * return it as a double, according to the NTP 64-bit timestamp format.
    251      */
    252     public static double decodeTimestamp(byte[] array, int pointer) {
    253         double r = 0.0;
    254 
    255         for (int i = 0; i < 8; i++) {
    256             r += unsignedByteToShort(array[pointer + i]) * Math.pow(2, (3 - i) * 8);
    257         }
    258 
    259         return r;
    260     }
    261 
    262     /** *//**
    263      * Encodes a timestamp in the specified position in the message
    264      */
    265     public static void encodeTimestamp(byte[] array, int pointer, double timestamp) {
    266         // Converts a double into a 64-bit fixed point
    267         for (int i = 0; i < 8; i++) {
    268             // 2^24, 2^16, 2^8, .. 2^-32
    269             double base = Math.pow(2, (3 - i) * 8);
    270 
    271             // Capture byte value
    272             array[pointer + i] = (byte) (timestamp / base);
    273 
    274             // Subtract captured value from remaining total
    275             timestamp = timestamp - (double) (unsignedByteToShort(array[pointer + i]) * base);
    276         }
    277 
    278         // From RFC 2030: It is advisable to fill the non-significant
    279         // low order bits of the timestamp with a random, unbiased
    280         // bitstring, both to avoid systematic roundoff errors and as
    281         // a means of loop detection and replay detection.
    282         array[7] = (byte) (Math.random() * 255.0);
    283     }
    284 
    285     /** *//**
    286      * Returns a timestamp (number of seconds since 00:00 1-Jan-1900) as a
    287      * formatted date/time string.
    288      */
    289     public static String timestampToString(double timestamp) {
    290         if (timestamp == 0)
    291             return "0";
    292 
    293         // timestamp is relative to 1900, utc is used by Java and is relative
    294         // to 1970
    295         double utc = timestamp - (2208988800.0);
    296 
    297         // milliseconds
    298         long ms = (long) (utc * 1000.0);
    299 
    300         // date/time
    301         String date = new SimpleDateFormat("dd-MMM-yyyy HH:mm:ss").format(new Date(ms));
    302 
    303         // fraction
    304         double fraction = timestamp - ((long) timestamp);
    305         String fractionSting = new DecimalFormat(".000000").format(fraction);
    306 
    307         return date + fractionSting;
    308     }
    309 
    310     /** *//**
    311      * Returns a string representation of a reference identifier according to
    312      * the rules set out in RFC 2030.
    313      */
    314     public static String referenceIdentifierToString(byte[] ref, short stratum, byte version) {
    315         // From the RFC 2030:
    316         // In the case of NTP Version 3 or Version 4 stratum-0 (unspecified)
    317         // or stratum-1 (primary) servers, this is a four-character ASCII
    318         // string, left justified and zero padded to 32 bits.
    319         if (stratum == 0 || stratum == 1) {
    320             return new String(ref);
    321         }
    322 
    323         // In NTP Version 3 secondary servers, this is the 32-bit IPv4
    324         // address of the reference source.
    325         else if (version == 3) {
    326             return unsignedByteToShort(ref[0]) + "." + unsignedByteToShort(ref[1]) + "." + unsignedByteToShort(ref[2]) + "." + unsignedByteToShort(ref[3]);
    327         }
    328 
    329         // In NTP Version 4 secondary servers, this is the low order 32 bits
    330         // of the latest transmit timestamp of the reference source.
    331         else if (version == 4) {
    332             return "" + ((unsignedByteToShort(ref[0]) / 256.0) + (unsignedByteToShort(ref[1]) / 65536.0) + (unsignedByteToShort(ref[2]) / 16777216.0) + (unsignedByteToShort(ref[3]) / 4294967296.0));
    333         }
    334 
    335         return "";
    336     }
    337 }
    View Code

    结果:

    poll: valid NTP request received the local clock offset is 3606.92320227623, responseTime= 265ms
    poll: NTP message : Leap indicator: 0 Version: 3 Mode: 4 Stratum: 1 Poll: 0 Precision: -18 (3.8E-6 seconds) Root delay: 0.00 ms Root dispersion: 0.00 ms Reference identifier: ACTS Reference timestamp: 26-三月-2009 20:50:23.508540 Originate timestamp: 26-三月-2009 19:51:10.031000 Receive timestamp:   26-三月-2009 20:51:17.086693 Transmit timestamp: 26-三月-2009 20:51:17.086712
    responsetime==265

    注意看红色部分,这是本地时间,我故意将本地时间调慢了一小时。


    附注1:中国大概能用的NTP时间服务器
         server 133.100.11.8 prefer 
         server 210.72.145.44 
         server 203.117.180.36 //程序中所用的
         server 131.107.1.10 
         server time.asia.apple.com 
         server 64.236.96.53 
         server 130.149.17.21 
         server 66.92.68.246 
         server www.freebsd.org 
         server 18.145.0.30 
         server clock.via.net 
         server 137.92.140.80 
         server 133.100.9.2 
         server 128.118.46.3 
         server ntp.nasa.gov 
         server 129.7.1.66 
         server ntp-sop.inria.frserver 210.72.145.44(国家授时中心服务器IP地址) 
         ntpdate 131.107.1.10 
         ntpdate -s time.asia.apple.com

    附注2:NTP概念简介


      Network Time Protocol(NTP)是用来使计算机时间同步化的一种协议,它可以使计算机对其服务器或时钟源(如石英钟,GPS等等)做同步化,它可以提供高精准度的时间校正(LAN上与标准间差小于1毫秒,WAN上几十毫秒),且可介由加密确认的方式来防止恶毒的协议攻击。

  • 相关阅读:
    rac启动维护笔记
    cache-fusion笔记
    RAC配置笔记
    记一次异机rman还原后的操作
    索引小结
    DBlink的创建与删除
    小说经典语录
    SQL通配符
    ArrayList集合详解
    Oracle数据库四种数据完整性约束
  • 原文地址:https://www.cnblogs.com/isoftware/p/4480953.html
Copyright © 2011-2022 走看看