给定数组 如{5,8,3,1} 则有<5,3><5,1><8,3><8,1><3,1> 5个逆序对
给定数组 求其逆序对的个数
思路:归并排序 O(NlogN) 时间复杂度 O(N) 空间复杂度
代码:
int num = 0; //逆序对个数 void mergg(int ar[],int low,int mid,int high) { int* b = new int[high + 1]; //b[] 复制 ar[] for (int i = low;i <= high;++i) { b[i] = ar[i]; } int i = low,j = mid + 1,k = low; while (i <= mid&&j <= high) { if (b[i] <= b[j]) { ar[k++] = b[i++]; } else { ar[k++] = b[j++]; num += mid - i + 1; //发生逆序,此时由于 //a[i..m]是已经有序了,那么a[i+1], a[i+2], ... a[m]都是大于a[j]的, //都可以和a[j]组成逆序对,因此number += m - i + 1 } } while (i <= mid){ ar[k++] = b[i++]; } //这两种情况只会发生一种 while (j <= high){ ar[k++] = b[j++]; } // delete []b; } void merge_sort(int ar[],int low,int high) //二路归并排序 { if (low < high) { int mid = low + (high - low)/2; merge_sort(ar,low,mid); merge_sort(ar,mid + 1,high); mergg(ar,low,mid,high); } }
PS: 还是基础最重要 掌握扎实的基础才是王道