zoukankan      html  css  js  c++  java
  • Spark mllib多层分类感知器在情感分析中的实际应用

    import org.apache.spark.ml.Pipeline
    import org.apache.spark.ml.classification.MultilayerPerceptronClassifier
    import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
    import org.apache.spark.ml.feature.{IndexToString, StringIndexer, Word2Vec}
    import org.apache.spark.sql.SparkSession
    // 读取数据源,格式如下:以空格隔开,最后一列数字列是分析标题后,人为打上的标签,
    值是按照情绪程度,值选择于【-1,-0.75,-0.5,-0.25,,0.25,0.50,0.75,1】其中之一。
    // 10090 C779C882AA39436A89C463BCB406B838 涨停板,复盘,全,靠,新,股,撑,门面,万科,A,尾盘,封板 0.75
    // 10091 519A9C6AD0A845298B0B3924117C0B4F 一,行业,再现,重大,利好,板块,反弹,仍,将,继续 0.75
    // 10092 C86CEC7DB9794311AF386C3D7B0B7CBD 藁城区,3,大,项目,新,获,规划证,开发,房企,系,同,一家 0
    // 10093 FCEA2FFC1C2F4D6C808F2CBC2FF18A8C 完善,对,境外,企业,和,对外,投资,统计,监测 0.5
    // 10094 204A77847F03404986331810E039DFC2 财联社,电报 0
    // 10095 E571B9EF451F4D5F8426A1FA06CD9EE6 审计署,部分,央企,业绩,不,实 -0.5
    // 10096 605264A2F6684CC4BB4B2A0B6A8FA078 厨卫,品牌,新,媒体,榜,看看,谁家,的,官微,最,爱,卖萌 0.25

    import org.apache.spark.ml.Pipeline
    import org.apache.spark.ml.classification.MultilayerPerceptronClassifier
    import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
    import org.apache.spark.ml.feature.{IndexToString, StringIndexer, Word2Vec}
    import org.apache.spark.sql.SparkSession


    object mllib {
      def main(args: Array[String]): Unit = {
        val spark = SparkSession.builder().appName(this.getClass.getSimpleName).master("local").getOrCreate()
        val parsedRDD = spark.sparkContext.textFile("D:\data\mlpc.txt").map(line => {
          val arr = line.split(" ")
          if (arr.length == 4) {
            (arr(3), arr(2).split(","))
          } else {
            ("", "".split(","))
          }
        })
        val msgDF = spark.createDataFrame(parsedRDD).toDF("label", "message")
        msgDF.printSchema()
        msgDF.show(false)
        val labelIndexer = new StringIndexer().setInputCol("label").setOutputCol("indexedLabel").fit(msgDF)
        val word2Vec = new Word2Vec().setInputCol("message").setOutputCol("features").setVectorSize(2).setMinCount(1)

        val layers = Array[Int](2, 250, 500, 200)
        val mlpc = new MultilayerPerceptronClassifier().setLayers(layers).setBlockSize(512).setSeed(1234L)
          .setMaxIter(128)
          .setFeaturesCol("features")
          .setLabelCol("indexedLabel")
          .setPredictionCol("prediction")

        val labelConverter = new IndexToString().setInputCol("prediction").setOutputCol("predictedLabel").setLabels(labelIndexer.labels)

        val Array(trainingData, testData) = msgDF.randomSplit(Array(0.8, 0.2))
        val pipeline = new Pipeline().setStages(Array(labelIndexer, word2Vec, mlpc, labelConverter))
        val model = pipeline.fit(trainingData)
        val predictionResultDF = model.transform(testData)
        //below 2 lines are for debug use
        predictionResultDF.printSchema
        predictionResultDF.select("message", "label", "predictedLabel").show(30)
        val evaluator = new MulticlassClassificationEvaluator().setLabelCol("indexedLabel").setPredictionCol("prediction").setMetricName("precision")
        val predictionAccuracy = evaluator.evaluate(predictionResultDF)
        println("Testing Accuracy is %2.4f".format(predictionAccuracy * 100) + "%")
        spark.stop

      }
    }

  • 相关阅读:
    我的通用dao理解
    Java JNI 编程进阶
    jpa
    WINCE6.0+S3C2443下的usb function(功能)驱动
    WINCE5.0下SQL server compact版本更新
    WINCE6.0+S3C2443下SD卡驱动
    错误的抉择,痛悔
    WINCE电源管理
    冒泡法和选择法排序
    WinCE CEDDK之Bus操作函数
  • 原文地址:https://www.cnblogs.com/itboys/p/10594970.html
Copyright © 2011-2022 走看看