zoukankan      html  css  js  c++  java
  • Spark Streaming Backpressure分析

    1、为什么引入Backpressure

                    默认情况下,Spark Streaming通过Receiver以生产者生产数据的速率接收数据,计算过程中会出现batch processing time > batch interval的情况,其中batch processing time 为实际计算一个批次花费时间, batch interval为Streaming应用设置的批处理间隔。这意味着Spark Streaming的数据接收速率高于Spark从队列中移除数据的速率,也就是数据处理能力低,在设置间隔内不能完全处理当前接收速率接收的数据。如果这种情况持续过长的时间,会造成数据在内存中堆积,导致Receiver所在Executor内存溢出等问题(如果设置StorageLevel包含disk, 则内存存放不下的数据会溢写至disk, 加大延迟)。Spark 1.5以前版本,用户如果要限制Receiver的数据接收速率,可以通过设置静态配制参数“spark.streaming.receiver.maxRate”的值来实现,此举虽然可以通过限制接收速率,来适配当前的处理能力,防止内存溢出,但也会引入其它问题。比如:producer数据生产高于maxRate,当前集群处理能力也高于maxRate,这就会造成资源利用率下降等问题。为了更好的协调数据接收速率与资源处理能力,Spark Streaming从v1.5开始引入反压机制(back-pressure),通过动态控制数据接收速率来适配集群数据处理能力。

    2、Backpressure

                    Spark Streaming Backpressure:  根据JobScheduler反馈作业的执行信息来动态调整Receiver数据接收率。通过属性“spark.streaming.backpressure.enabled”来控制是否启用backpressure机制,默认值false,即不启用。

    2.1 Streaming架构如下图所示(详见Streaming数据接收过程文档和Streaming 源码解析)

    2.2 BackPressure执行过程如下图所示:

      在原架构的基础上加上一个新的组件RateController,这个组件负责监听“OnBatchCompleted”事件,然后从中抽取processingDelay 及schedulingDelay信息.  Estimator依据这些信息估算出最大处理速度(rate),最后由基于Receiver的Input Stream将rate通过ReceiverTracker与ReceiverSupervisorImpl转发给BlockGenerator(继承自RateLimiter).

    3、BackPressure 源码解析

    3.1 RateController类体系

                    RateController 继承自StreamingListener. 用于处理BatchCompleted事件。核心代码为:

    **
     * A StreamingListener that receives batch completion updates, and maintains
     * an estimate of the speed at which this stream should ingest messages,
     * given an estimate computation from a `RateEstimator`
     */
    private[streaming] abstract class RateController(val streamUID: Int, rateEstimator: RateEstimator)
    extends StreamingListener with Serializable {
    ……
    ……  /**
       * Compute the new rate limit and publish it asynchronously.
       */
      private def computeAndPublish(time: Long, elems: Long, workDelay: Long, waitDelay: Long): Unit =
        Future[Unit] {
          val newRate = rateEstimator.compute(time, elems, workDelay, waitDelay)
          newRate.foreach { s =>
            rateLimit.set(s.toLong)
            publish(getLatestRate())
          }
        }
      def getLatestRate(): Long = rateLimit.get()
     
      override def onBatchCompleted(batchCompleted: StreamingListenerBatchCompleted) {
        val elements = batchCompleted.batchInfo.streamIdToInputInfo
        for {
          processingEnd <- batchCompleted.batchInfo.processingEndTime
          workDelay <- batchCompleted.batchInfo.processingDelay
          waitDelay <- batchCompleted.batchInfo.schedulingDelay
          elems <- elements.get(streamUID).map(_.numRecords)
        } computeAndPublish(processingEnd, elems, workDelay, waitDelay)
      }
    }  

    3.2 RateController的注册

                    JobScheduler启动时会抽取在DStreamGraph中注册的所有InputDstream中的rateController,并向ListenerBus注册监听. 此部分代码如下:

    def start(): Unit = synchronized {
       if (eventLoop != null) return // scheduler has already been started
     
       logDebug("Starting JobScheduler")
       eventLoop = new EventLoop[JobSchedulerEvent]("JobScheduler") {
         override protected def onReceive(event: JobSchedulerEvent): Unit = processEvent(event)
     
         override protected def onError(e: Throwable): Unit = reportError("Error in job scheduler", e)
       }
       eventLoop.start()
     
       // attach rate controllers of input streams to receive batch completion updates
       for {
         inputDStream <- ssc.graph.getInputStreams
         rateController <- inputDStream.rateController
       } ssc.addStreamingListener(rateController)
     
       listenerBus.start()
       receiverTracker = new ReceiverTracker(ssc)
       inputInfoTracker = new InputInfoTracker(ssc)
       receiverTracker.start()
       jobGenerator.start()
       logInfo("Started JobScheduler")
     }

    3.3 BackPressure执行过程分析

                    BackPressure 执行过程分为BatchCompleted事件触发时机和事件处理两个过程

    3.3.1 BatchCompleted触发过程

                    对BatchedCompleted的分析,应该从JobGenerator入手,因为BatchedCompleted是批次处理结束的标志,也就是JobGenerator产生的作业执行完成时触发的,因此进行作业执行分析。

                    Streaming 应用中JobGenerator每个Batch Interval都会为应用中的每个Output Stream建立一个Job, 该批次中的所有Job组成一个JobSet.使用JobScheduler的submitJobSet进行批量Job提交。此部分代码结构如下所示

    /** Generate jobs and perform checkpoint for the given `time`.  */
    private def generateJobs(time: Time) {
      // Set the SparkEnv in this thread, so that job generation code can access the environment
      // Example: BlockRDDs are created in this thread, and it needs to access BlockManager
      // Update: This is probably redundant after threadlocal stuff in SparkEnv has been removed.
      SparkEnv.set(ssc.env)
     
      // Checkpoint all RDDs marked for checkpointing to ensure their lineages are
      // truncated periodically. Otherwise, we may run into stack overflows (SPARK-6847).
      ssc.sparkContext.setLocalProperty(RDD.CHECKPOINT_ALL_MARKED_ANCESTORS, "true")
      Try {
        jobScheduler.receiverTracker.allocateBlocksToBatch(time) // allocate received blocks to batch
        graph.generateJobs(time) // generate jobs using allocated block
      } match {
        case Success(jobs) =>
          val streamIdToInputInfos = jobScheduler.inputInfoTracker.getInfo(time)
          jobScheduler.submitJobSet(JobSet(time, jobs, streamIdToInputInfos))
        case Failure(e) =>
          jobScheduler.reportError("Error generating jobs for time " + time, e)
      }
      eventLoop.post(DoCheckpoint(time, clearCheckpointDataLater = false))
    }

     其中,sumitJobSet会创建固定数量的后台线程(具体由“spark.streaming.concurrentJobs”指定),去处理Job Set中的Job. 具体实现逻辑为:

    def submitJobSet(jobSet: JobSet) {
      if (jobSet.jobs.isEmpty) {
        logInfo("No jobs added for time " + jobSet.time)
      } else {
        listenerBus.post(StreamingListenerBatchSubmitted(jobSet.toBatchInfo))
        jobSets.put(jobSet.time, jobSet)
        jobSet.jobs.foreach(job => jobExecutor.execute(new JobHandler(job)))
        logInfo("Added jobs for time " + jobSet.time)
      }
    }

    其中JobHandler用于执行Job及处理Job执行结果信息。当Job执行完成时会产生JobCompleted事件. JobHandler的具体逻辑如下面代码所示:

    private def handleJobCompletion(job: Job, completedTime: Long) {
       val jobSet = jobSets.get(job.time)
       jobSet.handleJobCompletion(job)
       job.setEndTime(completedTime)
       listenerBus.post(StreamingListenerOutputOperationCompleted(job.toOutputOperationInfo))
       logInfo("Finished job " + job.id + " from job set of time " + jobSet.time)
       if (jobSet.hasCompleted) {
         jobSets.remove(jobSet.time)
         jobGenerator.onBatchCompletion(jobSet.time)
         logInfo("Total delay: %.3f s for time %s (execution: %.3f s)".format(
           jobSet.totalDelay / 1000.0, jobSet.time.toString,
           jobSet.processingDelay / 1000.0
         ))
         listenerBus.post(StreamingListenerBatchCompleted(jobSet.toBatchInfo))
       }
       job.result match {
         case Failure(e) =>
           reportError("Error running job " + job, e)
         case _ =>
       }
     }

    3.3.2、BatchCompleted事件处理过程

                    StreamingListenerBus将事件转交给具体的StreamingListener,因此BatchCompleted将交由RateController进行处理。RateController接到BatchCompleted事件后将调用onBatchCompleted对事件进行处理。

    override def onBatchCompleted(batchCompleted: StreamingListenerBatchCompleted) {
      val elements = batchCompleted.batchInfo.streamIdToInputInfo
     
      for {
        processingEnd <- batchCompleted.batchInfo.processingEndTime
        workDelay <- batchCompleted.batchInfo.processingDelay
        waitDelay <- batchCompleted.batchInfo.schedulingDelay
        elems <- elements.get(streamUID).map(_.numRecords)
      } computeAndPublish(processingEnd, elems, workDelay, waitDelay)
    }

    onBatchCompleted会从完成的任务中抽取任务的执行延迟和调度延迟,然后用这两个参数用RateEstimator(目前存在唯一实现PIDRateEstimator,proportional-integral-derivative (PID) controller, PID控制器)估算出新的rate并发布。代码如下:

    /**
       * Compute the new rate limit and publish it asynchronously.
       */
      private def computeAndPublish(time: Long, elems: Long, workDelay: Long, waitDelay: Long): Unit =
        Future[Unit] {
          val newRate = rateEstimator.compute(time, elems, workDelay, waitDelay)
          newRate.foreach { s =>
            rateLimit.set(s.toLong)
            publish(getLatestRate())
          }
        }

    其中publish()由RateController的子类ReceiverRateController来定义。具体逻辑如下(ReceiverInputDStream中定义):

     /**
       * A RateController that sends the new rate to receivers, via the receiver tracker.
       */
      private[streaming] class ReceiverRateController(id: Int, estimator: RateEstimator)
          extends RateController(id, estimator) {
        override def publish(rate: Long): Unit =
          ssc.scheduler.receiverTracker.sendRateUpdate(id, rate)
      }

    publish的功能为新生成的rate 借助ReceiverTracker进行转发。ReceiverTracker将rate包装成UpdateReceiverRateLimit事交ReceiverTrackerEndpoint

    /** Update a receiver's maximum ingestion rate */
    def sendRateUpdate(streamUID: Int, newRate: Long): Unit = synchronized {
      if (isTrackerStarted) {
        endpoint.send(UpdateReceiverRateLimit(streamUID, newRate))
      }
    }

    ReceiverTrackerEndpoint接到消息后,其将会从receiverTrackingInfos列表中获取Receiver注册时使用的endpoint(实为ReceiverSupervisorImpl),再将rate包装成UpdateLimit发送至endpoint.其接到信息后,使用updateRate更新BlockGenerators(RateLimiter子类),来计算出一个固定的令牌间隔。

    /** RpcEndpointRef for receiving messages from the ReceiverTracker in the driver */
    private val endpoint = env.rpcEnv.setupEndpoint(
      "Receiver-" + streamId + "-" + System.currentTimeMillis(), new ThreadSafeRpcEndpoint {
        override val rpcEnv: RpcEnv = env.rpcEnv
     
        override def receive: PartialFunction[Any, Unit] = {
          case StopReceiver =>
            logInfo("Received stop signal")
            ReceiverSupervisorImpl.this.stop("Stopped by driver", None)
          case CleanupOldBlocks(threshTime) =>
            logDebug("Received delete old batch signal")
            cleanupOldBlocks(threshTime)
          case UpdateRateLimit(eps) =>
            logInfo(s"Received a new rate limit: $eps.")
            registeredBlockGenerators.asScala.foreach { bg =>
              bg.updateRate(eps)
            }
        }
      })

    其中RateLimiter的updateRate实现如下:

    /**
      * Set the rate limit to `newRate`. The new rate will not exceed the maximum rate configured by
      * {{{spark.streaming.receiver.maxRate}}}, even if `newRate` is higher than that.
      *
      * @param newRate A new rate in events per second. It has no effect if it's 0 or negative.
      */
     private[receiver] def updateRate(newRate: Long): Unit =
       if (newRate > 0) {
         if (maxRateLimit > 0) {
           rateLimiter.setRate(newRate.min(maxRateLimit))
         } else {
           rateLimiter.setRate(newRate)
         }
       }

     setRate的实现如下:

    public final void setRate(double permitsPerSecond) {
        Preconditions.checkArgument(permitsPerSecond > 0.0
            && !Double.isNaN(permitsPerSecond), "rate must be positive");
        synchronized (mutex) {
          resync(readSafeMicros());
          double stableIntervalMicros = TimeUnit.SECONDS.toMicros(1L) / permitsPerSecond;  //固定间隔
          this.stableIntervalMicros = stableIntervalMicros;
          doSetRate(permitsPerSecond, stableIntervalMicros);
        }
      }

    到此,backpressure反压机制调整rate结束。

    4.流量控制点

      当Receiver开始接收数据时,会通过supervisor.pushSingle()方法将接收的数据存入currentBuffer等待BlockGenerator定时将数据取走,包装成block. 在将数据存放入currentBuffer之时,要获取许可(令牌)。如果获取到许可就可以将数据存入buffer, 否则将被阻塞,进而阻塞Receiver从数据源拉取数据。

    /**
     * Push a single data item into the buffer.
     */
    def addData(data: Any): Unit = {
      if (state == Active) {
        waitToPush()  //获取令牌
        synchronized {
          if (state == Active) {
            currentBuffer += data
          } else {
            throw new SparkException(
              "Cannot add data as BlockGenerator has not been started or has been stopped")
          }
        }
      } else {
        throw new SparkException(
          "Cannot add data as BlockGenerator has not been started or has been stopped")
      }
    }

       其令牌投放采用令牌桶机制进行, 原理如下图所示:

    令牌桶机制: 大小固定的令牌桶可自行以恒定的速率源源不断地产生令牌。如果令牌不被消耗,或者被消耗的速度小于产生的速度,令牌就会不断地增多,直到把桶填满。后面再产生的令牌就会从桶中溢出。最后桶中可以保存的最大令牌数永远不会超过桶的大小。当进行某操作时需要令牌时会从令牌桶中取出相应的令牌数,如果获取到则继续操作,否则阻塞。用完之后不用放回。

      Streaming 数据流被Receiver接收后,按行解析后存入iterator中。然后逐个存入Buffer,在存入buffer时会先获取token,如果没有token存在,则阻塞;如果获取到则将数据存入buffer.  然后等价后续生成block操作。

  • 相关阅读:
    jsp 说明标签
    atcoder 它February 29th
    centos编译内核:no space left on device 解
    《Javascript权威指南》十六学习笔记:BOM资源---BOM基本应用
    2014ACM/ICPC亚洲区域赛牡丹江站汇总
    Swift_3_功能
    ExtJs在disabled和readOnly美学分析
    android -- 蓝牙 bluetooth (四)OPP文件传输
    android -- 蓝牙 bluetooth (三)搜索蓝牙
    android -- 蓝牙 bluetooth (二) 打开蓝牙
  • 原文地址:https://www.cnblogs.com/itboys/p/11119708.html
Copyright © 2011-2022 走看看