zoukankan      html  css  js  c++  java
  • 【BZOJ】3456: 城市规划(多项式求ln)

    题解

    在我写过分治NTT,多项式求逆之后

    我又一次写了多项式求ln

    我们定义一个数列的指数型生成函数为

    (sum_{i = 0}^{n} frac{A_{i}}{i!} x^{i})

    然后这个有个很好的性质,是什么呢,就是我们考虑两个排列(A)(B),不改变原来的顺序,把它们合并成一个排列,方案数显然是
    (inom{|A| + |B|}{|A|})
    现在每个相同长度的排列(A)带有一个价值(A_i)(B)同理

    (C_{k} = sum_{i = 0}^{k} inom{k}{i}A_{i}B_{k - i})
    (frac{C_{k}}{k!} = sum_{i = 0}^{k} frac{A_{i}}{i!} cdot frac{B_{k - i}}{(k - i)!})
    这样的话两个指数型函数的卷积就是我们想要的排列总和除以(n!)我们可以卷积之后还原回去

    然后我们考虑
    (G(x) = sum_{i = 0}^{+infty} frac{2^{inom{i}{2}}}{i!})表示(i)个点带标号的无向图个数
    (C(x) = sum_{i = 0}^{+infty} frac{c_i}{i!} x^{i})表示(i)个点带标号的无向联通图个数

    然后我们可以列出来
    (G(x) = frac{C(x)}{1!} + frac{C^2(x)}{2!} + frac{C^3(x)}{3!} + .... frac{C^{n}(x)}{n!} = e^{C(x)})
    怎么理解呢,以8个点的带标号无向图举个例子
    8 可以由3 5拼成,但是相乘的时候5 3会再算一次,所以除上(2!)
    而由4 4 拼成,虽然4 4只算一次,但是1 2 3 4 5 6 7 8 和 5 6 7 8 1 2 3 4本质上一样,所以也要除上(2!)

    然后我们可以得到
    (C(x) = ln(G(x)))

    怎么求(ln(G(x)))

    (F(x) = ln(G(x)))
    两边分别求导
    (F'(x) = frac{G'(x)}{G(x)})
    然后再两边积分起来
    (F(x) = int frac{G'(x)}{G(x)})
    求逆元是(O(n log n))求导(O(n))求积分(O(n))

    代码

    #include <bits/stdc++.h>
    #define fi first
    #define se second
    #define pii pair<int,int>
    #define mp make_pair
    #define pb push_back
    #define enter putchar('
    ')
    #define space putchar(' ')
    #define MAXN 130005
    #define mo 994711
    //#define ivorysi
    using namespace std;
    typedef unsigned long long int64;
    typedef long double db;
    typedef unsigned int u32;
    template<class T>
    void read(T &res) {
        res = 0;char c = getchar();T f = 1;
        while(c < '0' || c > '9') {
        	if(c == '-') f = -1;
        	c = getchar();
        }
        while(c >= '0' && c <= '9') {
        	res = res * 10 + c - '0';
        	c = getchar();
        }
        res *= f;
    }
    template<class T>
    void out(T x) {
        if(x < 0) {putchar('-');x = -x;}
        if(x >= 10) out(x / 10);
        putchar('0' + x % 10);
    }
    const int MOD = 1004535809,MAXL = 1 << 18;
    int W[(1 << 19) + 5],fac[MAXL + 5],inv[MAXL + 5],invfac[MAXL + 5],N;
    
    int mul(int a,int b) {
        return 1LL * a * b % MOD;
    }
    int inc(int a,int b) {
        return a + b >= MOD ? a + b - MOD : a + b;
    }
    int fpow(int x,int c) {
        int res = 1,t = x;
        while(c) {
    	if(c & 1) res = mul(res,t);
    	t = mul(t,t);
    	c >>= 1;
        }
        return res;
    }
    
    struct Poly {
        vector<int> p;
        Poly() {p.clear();}
        friend void NTT(Poly &f,int len,int on) {
    	f.p.resize(len);
    	for(int i = 1 , j = len >> 1; i < len - 1; ++i) {
    	    if(i < j) swap(f.p[i],f.p[j]);
    	    int k = len >> 1;
    	    while(j >= k) {
    		j -= k;
    		k >>= 1;
    	    }
    	    j += k;
    	}
    	for(int h = 2 ; h <= len ; h <<= 1) {
    	    int wn = W[(MAXL + on * MAXL / h) % MAXL];
    	    for(int k = 0 ; k < len ; k += h) {
    		int w = 1;
    		for(int j = k ; j < k + h / 2 ; ++j) {
    		    int u = f.p[j],t = mul(w,f.p[j + h / 2]);
    		    f.p[j] = inc(u,t);
    		    f.p[j + h / 2] = inc(u,MOD - t);
    		    w = mul(w,wn);
    		}
    	    }
    	}
    	if(on == -1) {
    	    int InvL = fpow(len,MOD - 2);
    	    for(int i = 0 ; i < len ; ++i) f.p[i] = mul(f.p[i],InvL);
    	}
        }
        friend Poly operator * (Poly a,Poly b) {
    	int L = a.p.size() + b.p.size() - 2;
    	int t = 1;
    	while(t <= L) t <<= 1;
    	a.p.resize(t);b.p.resize(t);
    	NTT(a,t,1);NTT(b,t,1);
    	Poly c;
    	for(int i = 0 ; i < t ; ++i) {
    	    c.p.pb(mul(a.p[i],b.p[i]));
    	}
    	NTT(c,t,-1);
    	int s = c.p.size() - 1;
    	while(s >= 0 && c.p[s] == 0) {c.p.pop_back();--s;}
    	return c;
        }
        friend Poly operator - (Poly a,Poly b) {
    	Poly c;
    	int L = max(a.p.size(),b.p.size());
    	a.p.resize(L);b.p.resize(L);
    	for(int i = 0 ; i < L ; ++i) c.p.pb(inc(a.p[i],MOD - b.p[i]));
    	return c;
        }
        friend Poly operator + (Poly a,Poly b) {
    	Poly c;
    	int L = max(a.p.size(),b.p.size());
    	a.p.resize(L);b.p.resize(L);
    	for(int i = 0 ; i < L ; ++i) c.p.pb(inc(a.p[i],b.p[i]));
    	return c;
        }
        friend Poly Inverse(Poly f,int t) {
    	f.p.resize(t);
    	if(t == 1) {
    	    Poly g;g.p.pb(fpow(f.p[0],MOD - 2));
    	    return g;
    	}
    	Poly g = Inverse(f,t >> 1);
    	t *= 2;
    	NTT(f,t,1);NTT(g,t,1);
    	Poly r;
    	for(int i = 0 ; i < t; ++i) {
    	    r.p.pb(inc(mul(2,g.p[i]),MOD - mul(mul(g.p[i],g.p[i]),f.p[i])));
    	}
    	NTT(r,t,-1);
    	t >>= 1;
    	r.p.resize(t);
    	--t;
    	while(t >= 0 && r.p[t] == 0) {r.p.pop_back();--t;}
    	return r;
        }
        friend Poly Integral(const Poly &f) {
    	Poly g;
    	int L = f.p.size();
    	g.p.resize(L + 1);
    	for(int i = 1 ; i <= L ; ++i) {
    	    g.p[i] = mul(f.p[i - 1],inv[i]);
    	}
    	return g;
        }
        friend Poly Derivative(const Poly &f) {
    	Poly g;
    	int L = f.p.size();
    	g.p.resize(L - 1);
    	for(int i = 0 ; i < L - 1; ++i) {
    	    g.p[i] = mul((i + 1),f.p[i + 1]);
    	}
    	return g;
        }
        friend Poly ln(const Poly &f) {
    	int t = 1;
    	while(t <= f.p.size() - 1) t <<= 1;
    	return Integral(Derivative(f) * Inverse(f,t));
    	
        }
    }g,f;
    void Solve() {
        read(N);
        W[0] = 1;
        W[1] = fpow(3,(MOD - 1) / MAXL);
        for(int i = 2 ; i < MAXL ; ++i) W[i] = mul(W[i - 1],W[1]);
        fac[0] = 1;invfac[0] = 1;
        inv[1] = 1;
        for(int i = 2 ; i <= MAXL ; ++i) inv[i] = mul(inv[MOD % i],MOD - MOD / i);
        for(int i = 1 ; i <= MAXL ; ++i) fac[i] = mul(fac[i - 1],i);
        for(int i = 1 ; i <= MAXL ; ++i) invfac[i] = mul(invfac[i - 1],inv[i]);
        g.p.resize(N + 1);
        g.p[0] = g.p[1] = 1;
        for(int i = 2 ; i <= N ; ++i) {
    	g.p[i] = mul(fpow(2,1LL * i * (i - 1) / 2 % (MOD - 1)),invfac[i]);
        }
        f = ln(g);
        out(mul(fac[N],f.p[N]));enter;
    }
    
    int main() {
    #ifdef ivorysi
        freopen("f1.in","r",stdin);
    #endif
        Solve();
    }
    
  • 相关阅读:
    bzoj 3438 小M的作物
    洛谷 1126 机器人搬重物
    hdu 4055 Number String
    顺序对齐
    codevs 1300 文件排版
    NOIP 2015 提高组 Day2
    poj 2484 A Funny Game
    51nod 1548 欧姆诺姆和糖果 (制约关系优化枚举)
    hdu 1907 John (anti—Nim)
    hdu 2516 取石子游戏 (斐波那契博弈)
  • 原文地址:https://www.cnblogs.com/ivorysi/p/9756961.html
Copyright © 2011-2022 走看看