zoukankan      html  css  js  c++  java
  • Divisors_组合数因子个数

    Description

    Your task in this problem is to determine the number of divisors of Cnk. Just for fun -- or do you need any special reason for such a useful computation?

    Input

    The input consists of several instances. Each instance consists of a single line containing two integers n and k (0 ≤ k ≤ n ≤ 431), separated by a single space.

    Output

    For each instance, output a line containing exactly one integer -- the number of distinct divisors of Cnk. For the input instances, this number does not exceed 263 - 1.

    Sample Input

    5 1
    6 3
    10 4

    Sample Output

    2
    6
    16

    【题意】求C(n,m)的质因子的个数。

    【定理】设正整数n的所有素因子分解n=p1^a1*p2^a2*p3^a3****ps^as,那么T(n)=(a1+1)*(a2+1)*(a3+1)***(an+1);(求因子的个数的公式)

    1.求出N以内素数

    2.ei=[N/pi^1]+ [N/pi^2]+ …… + [N/pi^n] 其中[]为取整。即可以 int ei=0;while(N) ei+=(N/=pi);

    3.套公式计算了,M=(e1+1)*(e2+1)*……*(en+1)

    #include<iostream>
    #include<stdio.h>
    #include<string.h>
    using namespace std;
    const int N=450;
    int prime[1000]={2,3,5};
    int k=3;
    long long n,m,cnt[N][N];
    void get_prime()//将1000以内的素数存入prime数组;
    {
        int flag;
        int p=2;
        for(int i=7;i<=1000;i+=p)
        {
            flag=0;
            p=6-p;//巧妙的跳过了3的倍数,提高了效率
            for(int j=0;prime[j]*prime[j]<=i;j++)
            {
                if(i%prime[j]==0)
                {
                    flag=1;
                    break;
                }
            }
            if(!flag) prime[k++]=i;
        }
    }
    void init()
    {
        memset(cnt,0,sizeof(cnt));
        get_prime();
        long long tmp,ret;
        for(int i=2;i<=431;i++)
        {
            for(int j=0;prime[j]<=i;j++)
            {
                tmp=i;
                ret=0;
                while(tmp)
                {
                    tmp=tmp/prime[j];
                    ret+=tmp;
                }
                cnt[i][prime[j]]=ret;//i的质因子数
            }
        }
    }
    int main()
    {
        init();
        long long ret,ans;
        while(~scanf("%lld%lld",&n,&m))
        {
            ans=1;
            for(int i=0;prime[i]<=n;i++)
            {
                ret=cnt[n][prime[i]]-cnt[m][prime[i]]-cnt[n-m][prime[i]];//c(n,m)=n!/((n-m)!m!),把对应因子个数相减,我们就得到了c(n,m)分解的结果
                ans*=(ret+1);
            }
            printf("%lld
    ",ans);
        }
        return 0;
    }
  • 相关阅读:
    0909 初识编译原理
    校园跳蚤市场-Sprint计划
    校园跳蚤市场
    5.2-5.3
    5.1封装
    阅读2
    汉堡包
    五章-问题
    结对子作业 四则运算 V2.0
    四则运算升级版
  • 原文地址:https://www.cnblogs.com/iwantstrong/p/5851443.html
Copyright © 2011-2022 走看看