zoukankan      html  css  js  c++  java
  • Zipper_DP

    Description

    Given three strings, you are to determine whether the third string can be formed by combining the characters in the first two strings. The first two strings can be mixed arbitrarily, but each must stay in its original order. 

    For example, consider forming "tcraete" from "cat" and "tree": 

    String A: cat 
    String B: tree 
    String C: tcraete 

    As you can see, we can form the third string by alternating characters from the two strings. As a second example, consider forming "catrtee" from "cat" and "tree": 

    String A: cat 
    String B: tree 
    String C: catrtee 

    Finally, notice that it is impossible to form "cttaree" from "cat" and "tree". 

    Input

    The first line of input contains a single positive integer from 1 through 1000. It represents the number of data sets to follow. The processing for each data set is identical. The data sets appear on the following lines, one data set per line. 

    For each data set, the line of input consists of three strings, separated by a single space. All strings are composed of upper and lower case letters only. The length of the third string is always the sum of the lengths of the first two strings. The first two strings will have lengths between 1 and 200 characters, inclusive. 

    Output

    For each data set, print: 

    Data set n: yes 

    if the third string can be formed from the first two, or 

    Data set n: no 

    if it cannot. Of course n should be replaced by the data set number. See the sample output below for an example. 

    Sample Input

    3
    cat tree tcraete
    cat tree catrtee
    cat tree cttaree
    

    Sample Output

    Data set 1: yes
    Data set 2: yes
    Data set 3: no

     【题意】给出三个字符串,求前两个是否包含在第三个中。

    【思路】之前用过dfs,这次用dp,检验dp[len1][len2]是否为1;

    #include<iostream>
    #include<stdio.h>
    #include<string.h>
    using namespace std;
    const int N=555;
    int dp[N][N];
    int main()
    {
        int n;
        char a[N],b[N],c[N];
        int cas=0;
        while(~scanf("%d",&n))
        {
            cas++;
            memset( dp,0,sizeof(dp));
            scanf("%s%s%s",a+1,b+1,c+1);
            int len1=strlen(a+1);
            int len2=strlen(b+1);
            int len3=strlen(c+1);
            for(int i=1;i<=len1;i++)
            {
                if(a[i]==c[i]) dp[i][0]=1;
                else break;
            }
            for(int j=1;j<=len2;j++)
            {
                if(b[j]==c[j])
                    dp[0][j]=1;
                else break;
            }
            for(int i=1;i<=len1;i++)
            {
                for(int j=1;j<=len2;j++)
                {
                    if(c[i+j]==a[i]&&dp[i-1][j])
                        dp[i][j]=1;
                    if(c[i+j]==b[j]&&dp[i][j-1])
                        dp[i][j]=1;
                }
            }
            printf("Data set %d: ",cas);
            if(dp[len1][len2]) printf("yes
    ");
            else printf("no
    ");
        }
        return 0;
    }
  • 相关阅读:
    selenium 浏览器操作
    selenium 4.0新特性及新旧api对比
    Selenium123介绍
    selenium元素定位(三) css定位方法
    selenium 安装和启动
    Selenium元素定位(一)30+1+5种方式
    软件开发经验收集
    spring+hibernate架构中Dao访问数据库的几种方法
    某励志书4
    PHP的Foreach
  • 原文地址:https://www.cnblogs.com/iwantstrong/p/5950260.html
Copyright © 2011-2022 走看看