Description

The knight is getting bored of seeing the same black and white squares again and again and has decided to make a journey
around the world. Whenever a knight moves, it is two squares in one direction and one square perpendicular to this. The world of a knight is the chessboard he is living on. Our knight lives on a chessboard that has a smaller area than a regular 8 * 8 board, but it is still rectangular. Can you help this adventurous knight to make travel plans?
Problem
Find a path such that the knight visits every square once. The knight can start and end on any square of the board.
Input
The input begins with a positive integer n in the first line. The following lines contain n test cases. Each test case consists of a single line with two positive integers p and q, such that 1 <= p * q <= 26. This represents a p * q chessboard, where p describes how many different square numbers 1, . . . , p exist, q describes how many different square letters exist. These are the first q letters of the Latin alphabet: A, . . .
Output
The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the lexicographically first path that visits all squares of the chessboard with knight moves followed by an empty line. The path should be given on a single line by concatenating the names of the visited squares. Each square name consists of a capital letter followed by a number.
If no such path exist, you should output impossible on a single line.
If no such path exist, you should output impossible on a single line.
Sample Input
3 1 1 2 3 4 3
Sample Output
Scenario #1: A1 Scenario #2: impossible Scenario #3: A1B3C1A2B4C2A3B1C3A4B2C4
【题意】给出m*n的方阵(但输入时先输入的是n,再输入m),问马是否能走遍棋盘,输出字典序的第一种路径。
【思路】用mp[i][0]表示第i步所在那个格子的横坐标,用mp[i][1]表示第i步所在那个格子的纵坐标。
字典序的话,注意di数组的顺序。用一个dfs就好啦。
#include <iostream> #include<stdio.h> #include<string.h> using namespace std; const int N=100; int vis[N][N]; int mp[N][2]; int n,m; bool flag; int di[8][2]={-2,-1,-2,1,-1,-2,-1,2,1,-2,1,2,2,-1,2,1}; bool go(int x,int y) { if(x<0||x>=n||y<0||y>=m) return false; else return true; } void dfs(int i,int j,int k) { if(k==n*m) { for(int i=0;i<k;i++) { printf("%c%d",mp[i][0]+'A',mp[i][1]+1); } printf(" "); flag=true; // return ; } else for(int x=0;x<8;x++) { int xx=i+di[x][0]; int yy=j+di[x][1]; if(!vis[xx][yy]&&go(xx,yy)&&!flag) { vis[xx][yy]=1; mp[k][0]=xx; mp[k][1]=yy; dfs(xx,yy,k+1); vis[xx][yy]=0; } } } int main() { int t,cas=1; scanf("%d",&t); while(t--) { scanf("%d%d",&m,&n); memset(vis,0,sizeof(vis)); vis[0][0]=1; mp[0][0]=0; mp[0][1]=0; flag=false; printf("Scenario #%d: ",cas++); dfs(0,0,1); if(!flag) printf("impossible "); puts(""); } return 0; }