zoukankan      html  css  js  c++  java
  • HDU 2767 Proving Equivalences (Tarjan )

    Proving Equivalences

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 1842    Accepted Submission(s): 698


    Problem Description
    Consider the following exercise, found in a generic linear algebra textbook.

    Let A be an n × n matrix. Prove that the following statements are equivalent:

    1. A is invertible.
    2. Ax = b has exactly one solution for every n × 1 matrix b.
    3. Ax = b is consistent for every n × 1 matrix b.
    4. Ax = 0 has only the trivial solution x = 0. 

    The typical way to solve such an exercise is to show a series of implications. For instance, one can proceed by showing that (a) implies (b), that (b) implies (c), that (c) implies (d), and finally that (d) implies (a). These four implications show that the four statements are equivalent.

    Another way would be to show that (a) is equivalent to (b) (by proving that (a) implies (b) and that (b) implies (a)), that (b) is equivalent to (c), and that (c) is equivalent to (d). However, this way requires proving six implications, which is clearly a lot more work than just proving four implications!

    I have been given some similar tasks, and have already started proving some implications. Now I wonder, how many more implications do I have to prove? Can you help me determine this?
     
    Input
    On the first line one positive number: the number of testcases, at most 100. After that per testcase:

    * One line containing two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤ 50000): the number of statements and the number of implications that have already been proved.
    * m lines with two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved that statement s1 implies statement s2.
     
    Output
    Per testcase:

    * One line with the minimum number of additional implications that need to be proved in order to prove that all statements are equivalent.
     
    Sample Input
    2 4 0 3 2 1 2 1 3
     
    Sample Output
    4 2
     
    Source
     
    Recommend
    lcy
     

     题意:至少加几条边让整个图变成强连通,

    分析见代码:

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    
    using namespace std;
    
    const int VM=20010;
    const int EM=50010;
    const int INF=0x3f3f3f3f;
    
    struct Edge{
        int to,nxt;
    }edge[EM<<1];
    
    int n,m,cnt,head[VM];
    int dep,top,atype;
    int dfn[VM],low[VM],vis[VM],stack[VM],belong[VM],indeg[VM],outdeg[VM];
    
    void addedge(int cu,int cv){
        edge[cnt].to=cv;    edge[cnt].nxt=head[cu];     head[cu]=cnt++;
    }
    
    void Tarjan(int u){
        dfn[u]=low[u]=++dep;
        stack[top++]=u;
        vis[u]=1;
        for(int i=head[u];i!=-1;i=edge[i].nxt){
            int v=edge[i].to;
            if(!dfn[v]){
                Tarjan(v);
                low[u]=min(low[u],low[v]);
            }else if(vis[v]){
                low[u]=min(low[u],dfn[v]);
            }
        }
        int j;
        if(dfn[u]==low[u]){
            atype++;
            do{
                j=stack[--top];
                belong[j]=atype;
                vis[j]=0;
            }while(u!=j);
        }
    }
    
    void init(){
        cnt=0;
        memset(head,-1,sizeof(head));
        dep=0,  top=0,  atype=0;
        memset(dfn,0,sizeof(dfn));
        memset(low,0,sizeof(low));
        memset(vis,0,sizeof(vis));
        memset(belong,0,sizeof(belong));
        memset(indeg,0,sizeof(indeg));
        memset(outdeg,0,sizeof(outdeg));
    }
    
    int main(){
    
        //freopen("input.txt","r",stdin);
    
        int t;
        scanf("%d",&t);
        while(t--){
            scanf("%d%d",&n,&m);
            if(n==1){   //特判1(n==1,m==0)
                printf("0\n");
                continue;
            }
            if(m==0){   //特判2( n==?,m==0)
                printf("%d\n",n);
                continue;
            }
            init();
            int u,v;
            while(m--){
                scanf("%d%d",&u,&v);
                addedge(u,v);
            }
            for(int i=1;i<=n;i++)
                if(!dfn[i])
                    Tarjan(i);
            if(atype==1){   //如果强连通个数为1,
                printf("0\n");
                continue;
            }
            for(int u=1;u<=n;u++)
                for(int i=head[u];i!=-1;i=edge[i].nxt){
                    int v=edge[i].to;
                    if(belong[u]!=belong[v]){
                        outdeg[belong[u]]++;
                        indeg[belong[v]]++;
                    }
                }
            int ans1=0,ans2=0;
            //printf("atype=%d\n",atype);
            for(int i=1;i<=atype;i++){
                if(indeg[i]==0)
                    ans1++;
                if(outdeg[i]==0)
                    ans2++;
            }
            //printf("         ans1=%d   ans2=%d\n",ans1,ans2);
            printf("%d\n",max(ans1,ans2));  //至少加几条边让整个图变成强连通(即,出度或入度的最大值)
        }
        return 0;
    }
  • 相关阅读:
    敏捷开发
    开撕队-软件需求规格说明书
    开撕队前来问候
    Four-operations: 使用node.js实现四则运算程序
    wordcount
    编码的故事转载2018-02-28更新
    MySQL学习笔记2018-02-07更新
    Linux各文件及目录说明2018-03-01更新
    Linux安全运维笔记2018-03-01更新
    jQuery实现商品五星评价
  • 原文地址:https://www.cnblogs.com/jackge/p/3137159.html
Copyright © 2011-2022 走看看