zoukankan      html  css  js  c++  java
  • HDU 3861 The King’s Problem (Tarjan + 二分匹配)

    The King’s Problem

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 1142    Accepted Submission(s): 424


    Problem Description
    In the Kingdom of Silence, the king has a new problem. There are N cities in the kingdom and there are M directional roads between the cities. That means that if there is a road from u to v, you can only go from city u to city v, but can’t go from city v to city u. In order to rule his kingdom more effectively, the king want to divide his kingdom into several states, and each city must belong to exactly one state. What’s more, for each pair of city (u, v), if there is one way to go from u to v and go from v to u, (u, v) have to belong to a same state. And the king must insure that in each state we can ether go from u to v or go from v to u between every pair of cities (u, v) without passing any city which belongs to other state.
      Now the king asks for your help, he wants to know the least number of states he have to divide the kingdom into.
     
    Input
    The first line contains a single integer T, the number of test cases. And then followed T cases. 

    The first line for each case contains two integers n, m(0 < n <= 5000,0 <= m <= 100000), the number of cities and roads in the kingdom. The next m lines each contains two integers u and v (1 <= u, v <= n), indicating that there is a road going from city u to city v.
     
    Output
    The output should contain T lines. For each test case you should just output an integer which is the least number of states the king have to divide into.
     
    Sample Input
    1 3 2 1 2 1 3
     
    Sample Output
    2
     
    Source
     
    Recommend
    lcy
     
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<vector>
    
    using namespace std;
    
    const int VM=50100;
    const int EM=100010;
    const int INF=0x3f3f3f3f;
    
    struct Edge{
        int to,nxt;
    }edge[EM<<1];
    
    int n,m,cnt,head[VM];
    int dep,top,atype;
    int dfn[VM],low[VM],vis[VM],stack[VM],belong[VM];
    vector<int> vt[VM];
    
    void addedge(int cu,int cv){
        edge[cnt].to=cv;    edge[cnt].nxt=head[cu];     head[cu]=cnt++;
    }
    
    void Tarjan(int u){
        dfn[u]=low[u]=++dep;
        stack[top++]=u;
        vis[u]=1;   //开始这里写成=0,WA~~~~~!!!!!!!!
        for(int i=head[u];i!=-1;i=edge[i].nxt){
            int v=edge[i].to;
            if(!dfn[v]){
                Tarjan(v);
                low[u]=min(low[u],low[v]);
            }else if(vis[v]){
                low[u]=min(low[u],dfn[v]);
            }
        }
        int j;
        if(dfn[u]==low[u]){
            atype++;
            do{
                j=stack[--top];
                belong[j]=atype;
                vis[j]=0;
            }while(u!=j);
        }
    }
    
    void init(){
        cnt=0;
        memset(head,-1,sizeof(head));
        dep=0,  top=0,  atype=0;
        memset(dfn,0,sizeof(dfn));
        memset(low,0,sizeof(low));
        memset(vis,0,sizeof(vis));
        memset(belong,0,sizeof(belong));
    }
    
    int linker[VM];
    
    int DFS(int u){
        int v;
        for(int i=0;i<(int)vt[u].size();i++){
            v=vt[u][i];
            if(!vis[v]){
                vis[v]=1;
                if(linker[v]==-1 || DFS(linker[v])){
                    linker[v]=u;
                    return 1;
                }
            }
        }
        return 0;
    }
    
    int Hungary(){
        int ans=0,u;
        memset(linker,-1,sizeof(linker));
        for(u=1;u<=atype;u++){
            memset(vis,0,sizeof(vis));
            if(DFS(u))
                ans++;
        }
        return ans;
    }
    
    int main(){
    
        //freopen("input.txt","r",stdin);
    
        int t;
        scanf("%d",&t);
        while(t--){
            scanf("%d%d",&n,&m);
            init();
            for(int i=1;i<=n;i++)
                vt[i].clear();
            int u,v;
            while(m--){
                scanf("%d%d",&u,&v);
                addedge(u,v);
            }
            for(int i=1;i<=n;i++)
                if(!dfn[i])
                    Tarjan(i);
            for(int u=1;u<=n;u++)
                for(int i=head[u];i!=-1;i=edge[i].nxt){
                    int v=edge[i].to;
                    if(belong[u]!=belong[v])
                        vt[belong[u]].push_back(belong[v]);
                }
            //printf("atype=%d\n",atype);
            printf("%d\n",atype-Hungary());
        }
        return 0;
    }
  • 相关阅读:
    LVS+KEEPALIVED(2/3)
    LVS+KEEPALIVED(1/3)
    DRF之权限源码详解
    DRF认证之源码详解
    Django REST framework之JWT
    Restful_Framework之插件
    求两个有序数组的中位数,要求时间复杂度log(m+n)
    Django_Restful_Framework视图与路由
    Django_Restful_Framework
    restFul接口设计规范
  • 原文地址:https://www.cnblogs.com/jackge/p/3137719.html
Copyright © 2011-2022 走看看