zoukankan      html  css  js  c++  java
  • errors _ golang

    In Go it's idiomatic to communicate errors via an explicit, separate return value. this constrasts errors via an explicit, separate return value. This constrasts with the exceptions used in languages like Java and Ruby and the overloaded single result / error value sometimes used in C. Go's approach makes it easy to see which functions return errors and to handle them using the same language constructs employed for any other, non-error tasks

    package main
    
    import (
        "errors"
        "fmt"
    )
    
    func f1(arg int) (int, error) {
        if arg == 42 {
            return -1, errors.New("can't work with 42")
        }
        return arg + 3, nil
    }
    
    type argError struct {
        arg  int
        prob string
    }
    
    func (e *argError) Error() string {
        return fmt.Sprintf("%d - %s", e.arg, e.prob)
    }
    
    func f2(arg int) (int, error) {
        if arg == 42 {
            return -1, &argError{arg, "can't work with it"}
        }
    
        return arg + 3, nil
    }
    
    func main() {
    
        for _, i := range []int{7, 42} {
            if r, e := f1(i); e != nil {
                fmt.Println("f1 failed : ", e)
            } else {
                fmt.Println("f2 worked : ", r)
            }
        }
    
        for _, i := range []int{7, 42} {
            if r, e := f2(i); e != nil {
                fmt.Println("f2 failed : ", e)
            } else {
                fmt.Println("f2 worked : ", r)
            }
        }
    
        _, e := f2(42)
        if ae, ok := e.(*argError); ok {
            fmt.Println(ae.arg)
            fmt.Println(ae.prob)
        }
    }
    f2 worked :  10
    f1 failed :  can't work with 42
    f2 worked :  10
    f2 failed :  42 - can't work with it
    42
    can't work with it

    总结 :

      1 : golang 的 内建函数 builtin.go 里面定义了 type error interface{ Error() string }; 实现了这个方法就是 自定义的 Error(查看源码 command + shift + 鼠标左键)

      2 : ....

  • 相关阅读:
    NOIP2018 模拟赛(二十二)雅礼NOI
    浅谈左偏树在OI中的应用
    HDU3062&&HDU1814
    2-SAT超入门讲解
    bitset常用用法&&简单题分析
    NOIp2014提高组初赛错题简析
    2018十月刷题列表
    BZOJ 4804: 欧拉心算
    Luogu P2568 GCD
    Luogu P4137 Rmq Problem / mex
  • 原文地址:https://www.cnblogs.com/jackkiexu/p/4338023.html
Copyright © 2011-2022 走看看