zoukankan      html  css  js  c++  java
  • 爬虫之Scripy

    Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架。 其可以应用在数据挖掘,信息处理或存储历史数据等一系列的程序中。
    其最初是为了页面抓取 (更确切来说, 网络抓取 )所设计的, 也可以应用在获取API所返回的数据(例如 Amazon Associates Web Services ) 或者通用的网络爬虫。Scrapy用途广泛,可以用于数据挖掘、监测和自动化测试。

    Scrapy 使用了 Twisted异步网络库来处理网络通讯。整体架构大致如下

    • 引擎(Scrapy)
             用来处理整个系统的数据流处理, 触发事务(框架核心)
    • 调度器(Scheduler)
             用来接受引擎发过来的请求, 压入队列中, 并在引擎再次请求的时候返回. 可以想像成一个URL(抓取网页的网址或者说是链接)的优先队列, 由它来决定下一个要抓取的网址是什么, 同时去除重复的网址
    • 下载器(Downloader)
             用于下载网页内容, 并将网页内容返回给蜘蛛(Scrapy下载器是建立在twisted这个高效的异步模型上的)
    • 爬虫(Spiders)
             爬虫是主要干活的, 用于从特定的网页中提取自己需要的信息, 即所谓的实体(Item)。用户也可以从中提取出链接,让Scrapy继续抓取下一个页面
    • 项目管道(Pipeline)
             负责处理爬虫从网页中抽取的实体,主要的功能是持久化实体、验证实体的有效性、清除不需要的信息。当页面被爬虫解析后,将被发送到项目管道,并经过几个特定的次序处理数据。
    • 下载器中间件(Downloader Middlewares)
            位于Scrapy引擎和下载器之间的框架,主要是处理Scrapy引擎与下载器之间的请求及响应。
    • 爬虫中间件(Spider Middlewares)
            介于Scrapy引擎和爬虫之间的框架,主要工作是处理蜘蛛的响应输入和请求输出。
    • 调度中间件(Scheduler Middewares)
        介于Scrapy引擎和调度之间的中间件,从Scrapy引擎发送到调度的请求和响应。

    Scrapy运行流程大概如下:

    1. 引擎从调度器中取出一个链接(URL)用于接下来的抓取
    2. 引擎把URL封装成一个请求(Request)传给下载器
    3. 下载器把资源下载下来,并封装成应答包(Response)
    4. 爬虫解析Response
    5. 解析出实体(Item),则交给实体管道进行进一步的处理
    6. 解析出的是链接(URL),则把URL交给调度器等待抓取

    安装:

    #scrapy 的一些依赖:pywin32、pyOpenSSL、Twisted、lxml 、zope.interface。(安装的时候,注意看报错信息)
    
    #安装wheel
    pip3 install wheel-i http://pypi.douban.com/simple --trusted-host pypi.douban.com
    
    #安装这个依赖包,才有安装上Twisted
    pip3 install Incremental -i http://pypi.douban.com/simple --trusted-host pypi.douban.com
    
    #再pip3安装Twisted,但是还是安装不成功,会报错。(解决其它依赖问题)
    pip3 install Twisted -i http://pypi.douban.com/simple --trusted-host pypi.douban.com
    
    #再进入软件存放目录,再安装就可以成功啦。
    pip3 install Twisted-17.1.0-cp35-cp35m-win32.whl
    
    #安装scrapy
    pip3 install scrapy -i http://pypi.douban.com/simple --trusted-host pypi.douban.com
    
    #pywin32
    下载:https://sourceforge.net/projects/pywin32/files/

    创建:

    #创建项目
    scrapy startproject xiaohuar
    
    
    #进入项目
    cd xiaohuar
    
    
    #创建爬虫应用
    scrapy genspider xiaohuar xiaohar.com
    
    
    #运行爬虫
    scrapy crawl chouti --nolog

    目录:

    project_name/
       scrapy.cfg
       project_name/
           __init__.py
           items.py
           pipelines.py
           settings.py
           spiders/
               __init__.py

    解释:

    • scrapy.cfg  项目的配置信息,主要为Scrapy命令行工具提供一个基础的配置信息。(真正爬虫相关的配置信息在settings.py文件中)
    • items.py    设置数据存储模板,用于结构化数据,如:Django的Model
    • pipelines    数据处理行为,如:一般结构化的数据持久化
    • settings.py 配置文件,如:递归的层数、并发数,延迟下载等
    • spiders      爬虫目录,如:创建文件,编写爬虫规则

    注意:一般创建爬虫文件时,以网站域名命名

    选择器:

    #!/usr/bin/env python
    # -*- coding:utf-8 -*-
    from scrapy.selector import Selector, HtmlXPathSelector
    from scrapy.http import HtmlResponse
    html = """<!DOCTYPE html>
    <html>
        <head lang="en">
            <meta charset="UTF-8">
            <title></title>
        </head>
        <body>
            <ul>
                <li class="item-"><a id='i1' href="link.html">first item</a></li>
                <li class="item-0"><a id='i2' href="llink.html">first item</a></li>
                <li class="item-1"><a href="llink2.html">second item<span>vv</span></a></li>
            </ul>
            <div><a href="llink2.html">second item</a></div>
        </body>
    </html>
    """
    response = HtmlResponse(url='http://example.com', body=html,encoding='utf-8')
    # hxs = HtmlXPathSelector(response)
    # print(hxs)
    # hxs = Selector(response=response).xpath('//a')
    # print(hxs)
    # hxs = Selector(response=response).xpath('//a[2]')
    # print(hxs)
    # hxs = Selector(response=response).xpath('//a[@id]')
    # print(hxs)
    # hxs = Selector(response=response).xpath('//a[@id="i1"]')
    # print(hxs)
    # hxs = Selector(response=response).xpath('//a[@href="link.html"][@id="i1"]')
    # print(hxs)
    # hxs = Selector(response=response).xpath('//a[contains(@href, "link")]')
    # print(hxs)
    # hxs = Selector(response=response).xpath('//a[starts-with(@href, "link")]')
    # print(hxs)
    # hxs = Selector(response=response).xpath('//a[re:test(@id, "id+")]')
    # print(hxs)
    # hxs = Selector(response=response).xpath('//a[re:test(@id, "id+")]/text()').extract()
    # print(hxs)
    # hxs = Selector(response=response).xpath('//a[re:test(@id, "id+")]/@href').extract()
    # print(hxs)
    # hxs = Selector(response=response).xpath('/html/body/ul/li/a/@href').extract()
    # print(hxs)
    # hxs = Selector(response=response).xpath('//body/ul/li/a/@href').extract_first()
    # print(hxs)
     
    # ul_list = Selector(response=response).xpath('//body/ul/li')
    # for item in ul_list:
    #     v = item.xpath('./a/span')
    #     # 或
    #     # v = item.xpath('a/span')
    #     # 或
    #     # v = item.xpath('*/a/span')
    #     print(v)

    自定义扩展:

    自定义扩展时,利用信号在指定位置注册制定操作

    from scrapy import signals
    
    
    class MyExtension(object):
        def __init__(self, value):
            self.value = value
    
        @classmethod
        def from_crawler(cls, crawler):
            val = crawler.settings.getint('MMMM')
            ext = cls(val)
    
            crawler.signals.connect(ext.spider_opened, signal=signals.spider_opened)
            crawler.signals.connect(ext.spider_closed, signal=signals.spider_closed)
    
            return ext
    
        def spider_opened(self, spider):
            print('open')
    
        def spider_closed(self, spider):
            print('close')

    自定义去重复:

    scrapy默认使用 scrapy.dupefilter.RFPDupeFilter 进行去重,相关配置有:

    DUPEFILTER_CLASS = 'scrapy.dupefilter.RFPDupeFilter'
    DUPEFILTER_DEBUG = False
    JOBDIR = "保存范文记录的日志路径,如:/root/"  # 最终路径为 /root/requests.seen

    自定义:

    #偶合性低,给url去重使用
    class RepeatFilter(object):
        def __init__(self):
            self.visited_set = set()
        @classmethod
        def from_settings(cls, settings):
            return cls()
        def request_seen(self, request):
            if request.url in self.visited_set:#先看当前url在不在visited_set
                return True
            self.visited_set.add(request.url) #如果不在就加进去
            return False
        def open(self):  # 每次开始的时候都会调用
            # print('open')
            pass
        def close(self, reason): #每次结束的时候都会调用
            # print('close')
            pass
        def log(self, request, spider):#每次捕捉到重复的url都会写在log里面
            # print('log....')
            pass

    settings:

    # 1. 爬虫名称
    # BOT_NAME = 'step8_king'
    
    # 2. 爬虫应用路径
    # SPIDER_MODULES = ['step8_king.spiders']
    # NEWSPIDER_MODULE = 'step8_king.spiders'
    
    # Crawl responsibly by identifying yourself (and your website) on the user-agent
    # 3. 客户端 user-agent请求头
    # USER_AGENT = 'step8_king (+http://www.yourdomain.com)'
    
    # Obey robots.txt rules
    # 4. 禁止爬虫配置
    # ROBOTSTXT_OBEY = False
    
    # Configure maximum concurrent requests performed by Scrapy (default: 16)
    # 5. 并发请求数
    # CONCURRENT_REQUESTS = 4
    
    # Configure a delay for requests for the same website (default: 0)
    # See http://scrapy.readthedocs.org/en/latest/topics/settings.html#download-delay
    # See also autothrottle settings and docs
    # 6. 延迟下载秒数
    # DOWNLOAD_DELAY = 2
    
    
    # The download delay setting will honor only one of:
    # 7. 单域名访问并发数,并且延迟下次秒数也应用在每个域名
    # CONCURRENT_REQUESTS_PER_DOMAIN = 2
    # 单IP访问并发数,如果有值则忽略:CONCURRENT_REQUESTS_PER_DOMAIN,并且延迟下次秒数也应用在每个IP
    # CONCURRENT_REQUESTS_PER_IP = 3
    
    # Disable cookies (enabled by default)
    # 8. 是否支持cookie,cookiejar进行操作cookie
    # COOKIES_ENABLED = True
    # COOKIES_DEBUG = True
    
    # Disable Telnet Console (enabled by default)
    # 9. Telnet用于查看当前爬虫的信息,操作爬虫等...
    #    使用telnet ip port ,然后通过命令操作
    # TELNETCONSOLE_ENABLED = True
    # TELNETCONSOLE_HOST = '127.0.0.1'
    # TELNETCONSOLE_PORT = [6023,]
    
    # Override the default request headers:
    # 10. 默认请求头
    # DEFAULT_REQUEST_HEADERS = {
    #     'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
    #     'Accept-Language': 'en',
    # }
    
    
    # Configure item pipelines
    # See http://scrapy.readthedocs.org/en/latest/topics/item-pipeline.html
    # 11. 定义pipeline处理请求
    # ITEM_PIPELINES = {
    #    'step8_king.pipelines.CustomPipeline': 500,
    # }
    
    
    # Enable or disable extensions
    # See http://scrapy.readthedocs.org/en/latest/topics/extensions.html
    # 12. 自定义扩展,基于信号进行调用
    # EXTENSIONS = {
    #     # 'step8_king.extensions.MyExtension': 500,
    # }
    
    
    # 13. 爬虫允许的最大深度,可以通过meta查看当前深度;0表示无深度
    # DEPTH_LIMIT = 3
    
    # 14. 爬取时,0表示深度优先Lifo(默认);1表示广度优先FiFo
    
    # 后进先出,深度优先
    # DEPTH_PRIORITY = 0
    # SCHEDULER_DISK_QUEUE = 'scrapy.squeue.PickleLifoDiskQueue'
    # SCHEDULER_MEMORY_QUEUE = 'scrapy.squeue.LifoMemoryQueue'
    # 先进先出,广度优先
    
    # DEPTH_PRIORITY = 1
    # SCHEDULER_DISK_QUEUE = 'scrapy.squeue.PickleFifoDiskQueue'
    # SCHEDULER_MEMORY_QUEUE = 'scrapy.squeue.FifoMemoryQueue'
    
    # 15. 调度器队列
    # SCHEDULER = 'scrapy.core.scheduler.Scheduler'
    # from scrapy.core.scheduler import Scheduler
    
    
    # 16. 访问URL去重
    # DUPEFILTER_CLASS = 'step8_king.duplication.RepeatUrl'
    
    
    # Enable and configure the AutoThrottle extension (disabled by default)
    # See http://doc.scrapy.org/en/latest/topics/autothrottle.html
    # 开始自动限速
    # AUTOTHROTTLE_ENABLED = True
    # The initial download delay
    # 初始下载延迟
    # AUTOTHROTTLE_START_DELAY = 10
    
    # The maximum download delay to be set in case of high latencies
    # 最大下载延迟
    # AUTOTHROTTLE_MAX_DELAY = 60
    # The average number of requests Scrapy should be sending in parallel to each remote server
    # 平均每秒并发数
    # AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0
    
    # Enable showing throttling stats for every response received:
    # 是否显示
    # AUTOTHROTTLE_DEBUG = True
    
    # Enable and configure HTTP caching (disabled by default)
    # See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings
    # HTTPCACHE_ENABLED = True
    # HTTPCACHE_EXPIRATION_SECS = 0
    # HTTPCACHE_DIR = 'httpcache'
    # HTTPCACHE_IGNORE_HTTP_CODES = []
    # HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'
    
    
    # Enable or disable spider middlewares
    # See http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html
    # 爬虫中间件
    SPIDER_MIDDLEWARES = {
       'step8_king.middlewares.MyCustomSpiderMiddleware': 543,
    }
    
    # Enable or disable downloader middlewares
    # See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html
    # 下载中间件
    DOWNLOADER_MIDDLEWARES = {
       # 'step8_king.middlewares.MyCustomDownloaderMiddleware': 500,
    }

    自定义pipline

    一个简单的爬虫:

    #!/usr/bin/env python
    # -*- coding:utf-8 -*-
    import scrapy
    from scrapy.http import Request
    from scrapy.selector import HtmlXPathSelector
    import re
    import urllib
    import os
     
     
    class XiaoHuarSpider(scrapy.spiders.Spider):
        name = "xiaohuar"
        allowed_domains = ["xiaohuar.com"]
        start_urls = [
            "http://www.xiaohuar.com/list-1-1.html",
        ]
     
        def parse(self, response):
            # 分析页面
            # 找到页面中符合规则的内容(校花图片),保存
            # 找到所有的a标签,再访问其他a标签,一层一层的搞下去
     
            hxs = HtmlXPathSelector(response)
     
            # 如果url是 http://www.xiaohuar.com/list-1-d+.html
            if re.match('http://www.xiaohuar.com/list-1-d+.html', response.url):
                items = hxs.select('//div[@class="item_list infinite_scroll"]/div')
                for i in range(len(items)):
                    src = hxs.select('//div[@class="item_list infinite_scroll"]/div[%d]//div[@class="img"]/a/img/@src' % i).extract()
                    name = hxs.select('//div[@class="item_list infinite_scroll"]/div[%d]//div[@class="img"]/span/text()' % i).extract()
                    school = hxs.select('//div[@class="item_list infinite_scroll"]/div[%d]//div[@class="img"]/div[@class="btns"]/a/text()' % i).extract()
                    if src:
                        ab_src = "http://www.xiaohuar.com" + src[0]
                        file_name = "%s_%s.jpg" % (school[0].encode('utf-8'), name[0].encode('utf-8'))
                        file_path = os.path.join("/Users/wupeiqi/PycharmProjects/beauty/pic", file_name)
                        urllib.urlretrieve(ab_src, file_path)
     
            # 获取所有的url,继续访问,并在其中寻找相同的url
            all_urls = hxs.select('//a/@href').extract()
            for url in all_urls:
                if url.startswith('http://www.xiaohuar.com/list-1-'):
                    yield Request(url, callback=self.parse)

    以上代码将符合规则的页面中的图片保存在指定目录,并且在HTML源码中找到所有的其他 a 标签的href属性,从而“递归”的执行下去,直到所有的页面都被访问过为止。以上代码之所以可以进行“递归”的访问相关URL,关键在于parse方法使用了 yield Request对象。

    注:可以修改settings.py 中的配置文件,以此来指定“递归”的层数,如: DEPTH_LIMIT = 1

    获取相应的cookie:

    def parse(self, response):
        from scrapy.http.cookies import CookieJar
        cookieJar = CookieJar()
        cookieJar.extract_cookies(response, response.request)
        print(cookieJar._cookies)

    格式化处理:

    上述实例只是简单的图片处理,所以在parse方法中直接处理。如果对于想要获取更多的数据(获取页面的价格、商品名称、QQ等),则可以利用Scrapy的items将数据格式化,然后统一交由pipelines来处理。

    import scrapy
     
    class JieYiCaiItem(scrapy.Item):
     
        company = scrapy.Field()
        title = scrapy.Field()
        qq = scrapy.Field()
        info = scrapy.Field()
        more = scrapy.Field()

    上述定义模板,以后对于从请求的源码中获取的数据同意按照此结构来获取,所以在spider中需要有一下操作:

    import scrapy
    import hashlib
    from beauty.items import JieYiCaiItem
    from scrapy.http import Request
    from scrapy.selector import HtmlXPathSelector
    from scrapy.spiders import CrawlSpider, Rule
    from scrapy.linkextractors import LinkExtractor
    
    
    class JieYiCaiSpider(scrapy.spiders.Spider):
        count = 0
        url_set = set()
    
        name = "jieyicai"
        domain = 'http://www.jieyicai.com'
        allowed_domains = ["jieyicai.com"]
    
        start_urls = [
            "http://www.jieyicai.com",
        ]
    
        rules = [
            #下面是符合规则的网址,但是不抓取内容,只是提取该页的链接(这里网址是虚构的,实际使用时请替换)
            #Rule(SgmlLinkExtractor(allow=(r'http://test_url/test?page_index=d+'))),
            #下面是符合规则的网址,提取内容,(这里网址是虚构的,实际使用时请替换)
            #Rule(LinkExtractor(allow=(r'http://www.jieyicai.com/Product/Detail.aspx?pid=d+')), callback="parse"),
        ]
    
        def parse(self, response):
            md5_obj = hashlib.md5()
            md5_obj.update(response.url)
            md5_url = md5_obj.hexdigest()
            if md5_url in JieYiCaiSpider.url_set:
                pass
            else:
                JieYiCaiSpider.url_set.add(md5_url)
                
                hxs = HtmlXPathSelector(response)
                if response.url.startswith('http://www.jieyicai.com/Product/Detail.aspx'):
                    item = JieYiCaiItem()
                    item['company'] = hxs.select('//span[@class="username g-fs-14"]/text()').extract()
                    item['qq'] = hxs.select('//span[@class="g-left bor1qq"]/a/@href').re('.*uin=(?P<qq>d*)&')
                    item['info'] = hxs.select('//div[@class="padd20 bor1 comard"]/text()').extract()
                    item['more'] = hxs.select('//li[@class="style4"]/a/@href').extract()
                    item['title'] = hxs.select('//div[@class="g-left prodetail-text"]/h2/text()').extract()
                    yield item
    
                current_page_urls = hxs.select('//a/@href').extract()
                for i in range(len(current_page_urls)):
                    url = current_page_urls[i]
                    if url.startswith('/'):
                        url_ab = JieYiCaiSpider.domain + url
                        yield Request(url_ab, callback=self.parse)

    此处代码的关键在于:

    • 将获取的数据封装在了Item对象中
    • yield Item对象 (一旦parse中执行yield Item对象,则自动将该对象交个pipelines的类来处理)
    # -*- coding: utf-8 -*-
    
    # Define your item pipelines here
    #
    # Don't forget to add your pipeline to the ITEM_PIPELINES setting
    # See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html
    
    import json
    from twisted.enterprise import adbapi
    import MySQLdb.cursors
    import re
    
    mobile_re = re.compile(r'(13[0-9]|15[012356789]|17[678]|18[0-9]|14[57])[0-9]{8}')
    phone_re = re.compile(r'(d+-d+|d+)')
    
    class JsonPipeline(object):
    
        def __init__(self):
            self.file = open('/Users/wupeiqi/PycharmProjects/beauty/beauty/jieyicai.json', 'wb')
    
    
        def process_item(self, item, spider):
            line = "%s  %s
    " % (item['company'][0].encode('utf-8'), item['title'][0].encode('utf-8'))
            self.file.write(line)
            return item
    
    class DBPipeline(object):
    
        def __init__(self):
            self.db_pool = adbapi.ConnectionPool('MySQLdb',
                                                 db='DbCenter',
                                                 user='root',
                                                 passwd='123',
                                                 cursorclass=MySQLdb.cursors.DictCursor,
                                                 use_unicode=True)
    
        def process_item(self, item, spider):
            query = self.db_pool.runInteraction(self._conditional_insert, item)
            query.addErrback(self.handle_error)
            return item
    
        def _conditional_insert(self, tx, item):
            tx.execute("select nid from company where company = %s", (item['company'][0], ))
            result = tx.fetchone()
            if result:
                pass
            else:
                phone_obj = phone_re.search(item['info'][0].strip())
                phone = phone_obj.group() if phone_obj else ' '
    
                mobile_obj = mobile_re.search(item['info'][1].strip())
                mobile = mobile_obj.group() if mobile_obj else ' '
    
                values = (
                    item['company'][0],
                    item['qq'][0],
                    phone,
                    mobile,
                    item['info'][2].strip(),
                    item['more'][0])
                tx.execute("insert into company(company,qq,phone,mobile,address,more) values(%s,%s,%s,%s,%s,%s)", values)
    
        def handle_error(self, e):
            print 'error',e

    上述中的pipelines中有多个类,到底Scapy会自动执行那个?哈哈哈哈,当然需要先配置了,不然Scapy就蒙逼了。。。

    在settings.py中做如下配置:

    ITEM_PIPELINES = {
        'beauty.pipelines.DBPipeline': 300,
        'beauty.pipelines.JsonPipeline': 100,
    }
    # 每行后面的整型值,确定了他们运行的顺序,item按数字从低到高的顺序,通过pipeline,通常将这些数字定义在0-1000范围内。

    一个小蜘蛛:

    import scrapy
    from scrapy.selector import HtmlXPathSelector
    from scrapy.http.request import Request
    from scrapy.http.cookies import CookieJar
    from scrapy import FormRequest
    
    
    class ChouTiSpider(scrapy.Spider):
        # 爬虫应用的名称,通过此名称启动爬虫命令
        name = "chouti"
        # 允许的域名
        allowed_domains = ["chouti.com"]
    
        cookie_dict = {}
        has_request_set = {}
    
        def start_requests(self):
            url = 'http://dig.chouti.com/'
            # return [Request(url=url, callback=self.login)]
            yield Request(url=url, callback=self.login)
    
        def login(self, response):
            cookie_jar = CookieJar()
            cookie_jar.extract_cookies(response, response.request)
            for k, v in cookie_jar._cookies.items():
                for i, j in v.items():
                    for m, n in j.items():
                        self.cookie_dict[m] = n.value
    
            req = Request(
                url='http://dig.chouti.com/login',
                method='POST',
                headers={'Content-Type': 'application/x-www-form-urlencoded; charset=UTF-8'},
                body='phone=8615131255089&password=pppppppp&oneMonth=1',
                cookies=self.cookie_dict,
                callback=self.check_login
            )
            yield req
    
        def check_login(self, response):
            req = Request(
                url='http://dig.chouti.com/',
                method='GET',
                callback=self.show,
                cookies=self.cookie_dict,
                dont_filter=True
            )
            yield req
    
        def show(self, response):
            # print(response)
            hxs = HtmlXPathSelector(response)
            news_list = hxs.select('//div[@id="content-list"]/div[@class="item"]')
            for new in news_list:
                # temp = new.xpath('div/div[@class="part2"]/@share-linkid').extract()
                link_id = new.xpath('*/div[@class="part2"]/@share-linkid').extract_first()
                yield Request(
                    url='http://dig.chouti.com/link/vote?linksId=%s' %(link_id,),
                    method='POST',
                    cookies=self.cookie_dict,
                    callback=self.do_favor
                )
    
            page_list = hxs.select('//div[@id="dig_lcpage"]//a[re:test(@href, "/all/hot/recent/d+")]/@href').extract()
            for page in page_list:
    
                page_url = 'http://dig.chouti.com%s' % page
                import hashlib
                hash = hashlib.md5()
                hash.update(bytes(page_url,encoding='utf-8'))
                key = hash.hexdigest()
                if key in self.has_request_set:
                    pass
                else:
                    self.has_request_set[key] = page_url
                    yield Request(
                        url=page_url,
                        method='GET',
                        callback=self.show
                    )
    
        def do_favor(self, response):
            print(response.text)
    自动登录抽屉点赞
  • 相关阅读:
    搭建一键化编译汇编语言的环境
    Windows内核中的CPU架构8任务段TSS(task state segment)
    80866中断
    x86132位x86 处理器编程架构
    80861计算机的启动过程
    Android 10升级至Android 11后关于startActivity启动应用抛异常处理方法
    通过AndroidJUnit4框架发现用例不会按顺序执行,变成随机了
    2021年11个我们喜爱的DevOps开源工具
    2021年终总结
    CF1204C Anna, Svyatoslav and Maps
  • 原文地址:https://www.cnblogs.com/jasonenbo/p/6877094.html
Copyright © 2011-2022 走看看