zoukankan      html  css  js  c++  java
  • HDU_1028_Ignatius and the Princess III_(母函数,dp)

    Ignatius and the Princess III

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 17917    Accepted Submission(s): 12558


    Problem Description
    "Well, it seems the first problem is too easy. I will let you know how foolish you are later." feng5166 says.

    "The second problem is, given an positive integer N, we define an equation like this:
      N=a[1]+a[2]+a[3]+...+a[m];
      a[i]>0,1<=m<=N;
    My question is how many different equations you can find for a given N.
    For example, assume N is 4, we can find:
      4 = 4;
      4 = 3 + 1;
      4 = 2 + 2;
      4 = 2 + 1 + 1;
      4 = 1 + 1 + 1 + 1;
    so the result is 5 when N is 4. Note that "4 = 3 + 1" and "4 = 1 + 3" is the same in this problem. Now, you do it!"
     
    Input
    The input contains several test cases. Each test case contains a positive integer N(1<=N<=120) which is mentioned above. The input is terminated by the end of file.
     
    Output
    For each test case, you have to output a line contains an integer P which indicate the different equations you have found.
     
    Sample Input
    4 10 20
     
    Sample Output
    5 42 627
     
    看了题解,学了两种方法。一种是母函数,一种是dp。
    母函数:组合数学方法,第一次接触。
      此题构造的母函数(1+x^1+x^2+x^3...+x^n)(1+x^2+x^4+x^6...+x^2n).....
      第一项表示(0个1,1个1,2个1,3个1...),第二项表示(0个2,1个2,2个2,3个2,4个2...)以此类推。
      展开后,每一项的指数表示划分的这个数,系数表示该数的划分数。
    import java.util.*;
    import java.io.*;
    
    public class Main {
    
        public static int cal(int n)
        {
            int c1[]=new int [n+1];
            int c2[]=new int [n+1];
            for(int i=0;i<=n;i++)
            {
                c1[i]=1;
                c2[i]=0;
            }
            for(int i=2;i<=n;i++)
            {
                for(int j=0;j<=n;j++)
                    for(int k=0;k+j<=n;k+=i)
                        c2[j+k]+=c1[j];
                for(int j=0;j<=n;j++)
                {
                    c1[j]=c2[j];
                    c2[j]=0;
                }
            }
            return c1[n];
        }
        public static void main(String[] args) {
            Scanner in=new Scanner(System.in);
            int n;
            while(in.hasNext())
            {
                n=in.nextInt();
                System.out.println(cal(n));
            }
        }
    
    }
    View Code

    dp:

    dp[i][j]表示i这个数划分为最大加数不超过j的划分数。

    if(i>j)  dp[i][j]=dp[i][j-1]+dp[i-j][j];

    else if(i==j)   dp[i][j]=dp[i][j-1]+1;

    else if(i<j)   dp[i][j]=dp[i][i];

    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<iostream>
    using namespace std;
    
    int dp[150][150];
    
    int main()
    {
        int n,m;
            //dp[1][1]=1;
            for(int i=1; i<=150; i++)
                for(int j=1; j<=150; j++)
                {
                    if(j==1)
                        dp[i][j]=1;
                    else if(i==j)
                        dp[i][j]=dp[i][j-1]+1;
                    else if(i>j)
                        dp[i][j]=dp[i][j-1]+dp[i-j][j];
                    else if(i<j)
                        dp[i][j]=dp[i][i];
                }
            while(scanf("%d",&n)!=EOF)
            {
                printf("%d
    ",dp[n][n]);
            }
    
    
        return 0;
    }
    View Code
  • 相关阅读:
    python ipython使用
    Django ORM 操作
    Django uwsgi 基础知识
    前端 vue router 传递参数
    观察者模式和发布订阅模式
    关于重绘和回流
    Vuex入门简单示例(五)
    Vuex入门简单示例(四)
    Vuex入门简单示例(三)
    Vuex入门简单示例(二)
  • 原文地址:https://www.cnblogs.com/jasonlixuetao/p/5534458.html
Copyright © 2011-2022 走看看