zoukankan      html  css  js  c++  java
  • 3.1_springboot2.x检索之elasticsearch安装&快速入门

    1、elasticsearch简介&安装

    1.1.1、elasticsearch介绍

    ​ 我们的应用经常需要添加检索功能,开源的 ElasticSearch 是目前全文搜索引擎的首选。他可以快速的存储、搜索和分析海量数据。Spring Boot通过整合Spring Data ElasticSearch为我们提供了非常便捷的检索功能支持;

    ​ Elasticsearch是一个分布式搜索服务,提供Restful API,底层基于Lucene,采用多shard(分片)的方式保证数据安全,并且提供自动resharding的功能,github等大型的站点也是采用了ElasticSearch作为其搜索服务。

    1.1.2、安装elasticsearch

    启动linux虚拟机,下载elasticsearch镜像

    在docker容器中查看镜像

    docker search elasticsearch
    

    下载:

    docker pull elasticsearch:6.8.3
    

    查看镜像:

    docker images
    

    注意:

    下载完镜像,运行:
    elasticsearch用java编写,默认初始会占用2G内存空间,虚拟机内存不够,所以得限制使用内存。

    docker run -e ES_JAVA_OPTS="-Xms256m -Xmx256m" -d -p 
    
    9200:9200 -p 9300:9300 --name ES01 dd156dd42341
    
    

    端口说明:

    9200:web通信
    9300:分布式节点通信

    这里有可能启动报错:错误原因之一运行:

    .docker logs -f  容器id 
    

    查看容器日志信息,看最后

    面发现一个error:

    ERROR: [1] bootstrap checks failed
    [1]: max virtual memory areas vm.max_map_count

    [65530] is too low, increase to at least
    显示max_map_count的值太小了,需要设大到262144

    查看max_map_count :

    cat /proc/sys/vm/max_map_count
    

    65530

    设置max_map_count:

    sysctl -w vm.max_map_count=262144
    

    vm.max_map_count = 262144
    重启容器:docker start 容器id或名字

    测试:

    在这里插入图片描述

    elasticsearch快速入门

    Elasticsearch是面向文档(document oriented)的,这意味着它可以存储整个对象或文档(document)。然而它不仅仅是存储,还会**索引(index)**每个文档的内容使之可以被搜索。在Elasticsearch中,你可以对文档(而非成行成列的数据)进行索引、搜索、排序、过滤。这种理解数据的方式与以往完全不同,这也是Elasticsearch能够执行复杂的全文搜索的原因之一。

    ELasticsearch使用Javascript对象符号(JavaScript Object Notation),也就是JSON,作为文档序列化格式。JSON现在已经被大多语言所支持,而且已经成为NoSQL领域的标准格式。它简洁、简单且容易阅读。

    以下使用JSON文档来表示一个用户对象:

    {
        "email":      "john@smith.com",
        "first_name": "John",
        "last_name":  "Smith",
        "info": {
            "bio":         "Eco-warrior and defender of the weak",
            "age":         25,
            "interests": [ "dolphins", "whales" ]
        },
        "join_date": "2014/05/01"
    }
    

    **理解elasticsearch:**举例

    假设我们刚好在Megacorp工作,这时人力资源部门出于某种目的需要让我们创建一个员工目录,这个目录用于促进人文关怀和用于实时协同工作,所以它有以下不同的需求:

    • 数据能够包含多个值的标签、数字和纯文本。

    • 检索任何员工的所有信息。

    • 支持结构化搜索,例如查找30岁以上的员工。

    • 支持简单的全文搜索和更复杂的**短语(phrase)**搜索

    • 高亮搜索结果中的关键字

    • 能够利用图表管理分析这些数据

      我们首先要做的是存储员工数据,每个文档代表一个员工。在Elasticsearch中存储数据的行为就叫做索引(indexing),不过在索引之前,我们需要明确数据应该存储在哪里。

      在Elasticsearch中,文档归属于一种类型(type),而这些类型存在于**索引(index)**中,我们可以画一些简单的对比图来类比传统关系型数据库:

      索引–mysq哪个数据库
      类型–mysql数据库中的表
      文档–mysql表中的每一行记录
      属性–mysql中每一列的属性

      • 索引(名词) 如上文所述,一个索引(index)就像是传统关系数据库中的数据库,它是相关文档存储的地方,index的复数是indicesindexes

      • 索引(动词) **「索引一个文档」表示把一个文档存储到索引(名词)**里,以便它可以被检索或者查询。这很像SQL中的INSERT关键字,差别是,如果文档已经存在,新的文档将覆盖旧的文档。

      • 倒排索引 传统数据库为特定列增加一个索引,例如B-Tree索引来加速检索。Elasticsearch和Lucene使用一种叫做**倒排索引(inverted index)**的数据结构来达到相同目的。

        所以为了创建员工目录,我们将进行如下操作:

        • 为每个员工的**文档(document)**建立索引,每个文档包含了相应员工的所有信息。
        • 每个文档的类型为employee
        • employee类型归属于索引megacorp
        • megacorp索引存储在Elasticsearch集群中。
      PUT /megacorp/employee/1
      {
          "first_name" : "John",
          "last_name" :  "Smith",
          "age" :        25,
          "about" :      "I love to go rock climbing",
          "interests": [ "sports", "music" ]
      }
      

      我们看到path:/megacorp/employee/1包含三部分信息:

      megacorp:索引名

      employee:类型名

      1:这个员工的ID

      Postman简单测试:

    让我们在目录中加入更多员工信息:

    存储数据

    PUT /megacorp/employee/2
    {
        "first_name" :  "Jane",
        "last_name" :   "Smith",
        "age" :         32,
        "about" :       "I like to collect rock albums",
        "interests":  [ "music" ]
    }
    
    PUT /megacorp/employee/3
    {
        "first_name" :  "Douglas",
        "last_name" :   "Fir",
        "age" :         35,
        "about":        "I like to build cabinets",
        "interests":  [ "forestry" ]
    }
    

    在这里插入图片描述

    检索文档

    我们只要执行HTTP GET请求并指出文档的“地址”——索引、类型和ID既可。根据这三部分信息,我们就可以返回原始JSON文档:

    GET /megacorp/employee/1
    

    响应的内容中包含一些文档的元信息,John Smith的原始JSON文档包含在_source字段中。

    在这里插入图片描述

    DELETE:删除员工

    HEAD:检查员工是否存在,看状态码

    我们通过HTTP方法GET来检索文档,同样的,我们可以使用DELETE方法删除文档,使用HEAD方法检查某文档是否存在。如果想更新已存在的文档,我们只需再PUT一次。

    简单搜索

    GET请求非常简单——你能轻松获取你想要的文档。让我们来进一步尝试一些东西,比如简单的搜索!

    我们尝试一个最简单的搜索全部员工的请求:

    GET /megacorp/employee/_search
    

    你可以看到我们依然使用megacorp索引和employee类型,但是我们在结尾使用关键字_search来取代原来的文档ID。响应内容的hits数组中包含了我们所有的三个文档。默认情况下搜索会返回前10个结果。

    在这里插入图片描述

    接下来,让我们搜索姓氏中包含**“Smith”的员工。要做到这一点,我们将在命令行中使用轻量级的搜索方法。这种方法常被称作查询字符串(query string)**搜索,因为我们像传递URL参数一样去传递查询语句

    GET /megacorp/employee/_search?q=last_name:Smith
    

    我们在请求中依旧使用_search关键字,然后将查询语句传递给参数q=。这样就可以得到所有姓氏为Smith的结果:

    {
       ...
       "hits": {
          "total":      2,
          "max_score":  0.30685282,
          "hits": [
             {
                ...
                "_source": {
                   "first_name":  "John",
                   "last_name":   "Smith",
                   "age":         25,
                   "about":       "I love to go rock climbing",
                   "interests": [ "sports", "music" ]
                }
             },
             {
                ...
                "_source": {
                   "first_name":  "Jane",
                   "last_name":   "Smith",
                   "age":         32,
                   "about":       "I like to collect rock albums",
                   "interests": [ "music" ]
                }
             }
          ]
       }
    }
    

    使用DSL语句查询

    查询字符串搜索便于通过命令行完成特定(ad hoc)的搜索,但是它也有局限性(参阅简单搜索章节)。Elasticsearch提供丰富且灵活的查询语言叫做DSL查询(Query DSL),它允许你构建更加复杂、强大的查询。

    **DSL(Domain Specific Language特定领域语言)**以JSON请求体的形式出现。我们可以这样表示之前关于“Smith”的查询:

    GET /megacorp/employee/_search
    {
        "query" : {
            "match" : {
                "last_name" : "Smith"
            }
        }
    }
    

    这会返回与之前查询相同的结果。你可以看到有些东西改变了,我们不再使用**查询字符串(query string)**做为参数,而是使用请求体代替。这个请求体使用JSON表示,其中使用了match语句(查询类型之一,具体我们以后会学到)

    更复杂的搜索

    我们让搜索稍微再变的复杂一些。我们依旧想要找到姓氏为“Smith”的员工,但是我们只想得到年龄大于30岁的员工。我们的语句将添加过滤器(filter),它使得我们高效率的执行一个结构化搜索:

    GET /megacorp/employee/_search
    {
        "query" : {
            "filtered" : {
                "filter" : {
                    "range" : {
                        "age" : { "gt" : 30 } <1>
                    }
                },
                "query" : {
                    "match" : {
                        "last_name" : "smith" <2>
                    }
                }
            }
        }
    }
    
    • <1> 这部分查询属于区间过滤器(range filter),它用于查找所有年龄大于30岁的数据——gt为"greater than"的缩写。
    • <2> 这部分查询与之前的match**语句(query)**一致。

    现在不要担心语法太多,我们将会在以后详细的讨论。你只要知道我们添加了一个**过滤器(filter)**用于执行区间搜索,然后重复利用了之前的match语句。现在我们的搜索结果只显示了一个32岁且名字是“Jane Smith”的员工:

    {
       ...
       "hits": {
          "total":      1,
          "max_score":  0.30685282,
          "hits": [
             {
                ...
                "_source": {
                   "first_name":  "Jane",
                   "last_name":   "Smith",
                   "age":         32,
                   "about":       "I like to collect rock albums",
                   "interests": [ "music" ]
                }
             }
          ]
       }
    }
    

    全文搜索

    到目前为止搜索都很简单:搜索特定的名字,通过年龄筛选。让我们尝试一种更高级的搜索,全文搜索——一种传统数据库很难实现的功能。

    我们将会搜索所有喜欢**“rock climbing”**的员工:

    GET /megacorp/employee/_search
    {
        "query" : {
            "match" : {
                "about" : "rock climbing"
            }
        }
    }
    

    你可以看到我们使用了之前的match查询,从about字段中搜索**“rock climbing”**,我们得到了两个匹配文档:

    {
       ...
       "hits": {
          "total":      2,
          "max_score":  0.16273327,
          "hits": [
             {
                ...
                "_score":         0.16273327, <1>
                "_source": {
                   "first_name":  "John",
                   "last_name":   "Smith",
                   "age":         25,
                   "about":       "I love to go rock climbing",
                   "interests": [ "sports", "music" ]
                }
             },
             {
                ...
                "_score":         0.016878016, <2>
                "_source": {
                   "first_name":  "Jane",
                   "last_name":   "Smith",
                   "age":         32,
                   "about":       "I like to collect rock albums",
                   "interests": [ "music" ]
                }
             }
          ]
       }
    }
    
    • <1><2> 结果相关性评分。

    默认情况下,Elasticsearch根据结果相关性评分来对结果集进行排序,所谓的「结果相关性评分」就是文档与查询条件的匹配程度。很显然,排名第一的John Smithabout字段明确的写到**“rock climbing”**。

    但是为什么Jane Smith也会出现在结果里呢?原因是**“rock”在她的abuot字段中被提及了。因为只有“rock”被提及而“climbing”**没有,所以她的_score要低于John。

    这个例子很好的解释了Elasticsearch如何在各种文本字段中进行全文搜索,并且返回相关性最大的结果集。**相关性(relevance)**的概念在Elasticsearch中非常重要,而这个概念在传统关系型数据库中是不可想象的,因为传统数据库对记录的查询只有匹配或者不匹配。

    短语搜索

    目前我们可以在字段中搜索单独的一个词,这挺好的,但是有时候你想要确切的匹配若干个单词或者短语(phrases)。例如我们想要查询同时包含"rock"和"climbing"(并且是相邻的)的员工记录。

    要做到这个,我们只要将match查询变更为match_phrase查询即可:

    GET /megacorp/employee/_search
    {
        "query" : {
            "match_phrase" : {
                "about" : "rock climbing"
            }
        }
    }
    

    毫无疑问,该查询返回John Smith的文档:

    {
       ...
       "hits": {
          "total":      1,
          "max_score":  0.23013961,
          "hits": [
             {
                ...
                "_score":         0.23013961,
                "_source": {
                   "first_name":  "John",
                   "last_name":   "Smith",
                   "age":         25,
                   "about":       "I love to go rock climbing",
                   "interests": [ "sports", "music" ]
                }
             }
          ]
       }
    }
    

    高亮我们的搜索

    很多应用喜欢从每个搜索结果中**高亮(highlight)**匹配到的关键字,这样用户可以知道为什么这些文档和查询相匹配。在Elasticsearch中高亮片段是非常容易的。

    让我们在之前的语句上增加highlight参数:

    GET /megacorp/employee/_search
    {
        "query" : {
            "match_phrase" : {
                "about" : "rock climbing"
            }
        },
        "highlight": {
            "fields" : {
                "about" : {}
            }
        }
    }
    

    当我们运行这个语句时,会命中与之前相同的结果,但是在返回结果中会有一个新的部分叫做highlight,这里包含了来自about字段中的文本,并且用<em></em>来标识匹配到的单词。

    {
       ...
       "hits": {
          "total":      1,
          "max_score":  0.23013961,
          "hits": [
             {
                ...
                "_score":         0.23013961,
                "_source": {
                   "first_name":  "John",
                   "last_name":   "Smith",
                   "age":         25,
                   "about":       "I love to go rock climbing",
                   "interests": [ "sports", "music" ]
                },
                "highlight": {
                   "about": [
                      "I love to go <em>rock</em> <em>climbing</em>" <1>
                   ]
                }
             }
          ]
       }
    }
    

    分析

    最后,我们还有一个需求需要完成:允许管理者在职员目录中进行一些分析。 Elasticsearch有一个功能叫做聚合(aggregations),它允许你在数据上生成复杂的分析统计。它很像SQL中的GROUP BY但是功能更强大。

    举个例子,让我们找到所有职员中最大的共同点(兴趣爱好)是什么:

    GET /megacorp/employee/_search
    {
      "aggs": {
        "all_interests": {
          "terms": { "field": "interests" }
        }
      }
    }
    

    暂时先忽略语法只看查询结果:

    {
       ...
       "hits": { ... },
       "aggregations": {
          "all_interests": {
             "buckets": [
                {
                   "key":       "music",
                   "doc_count": 2
                },
                {
                   "key":       "forestry",
                   "doc_count": 1
                },
                {
                   "key":       "sports",
                   "doc_count": 1
                }
             ]
          }
       }
    }
    

    我们可以看到两个职员对音乐有兴趣,一个喜欢林学,一个喜欢运动。这些数据并没有被预先计算好,它们是实时的从匹配查询语句的文档中动态计算生成的。如果我们想知道所有姓"Smith"的人最大的共同点(兴趣爱好),我们只需要增加合适的语句既可:

    GET /megacorp/employee/_search
    {
      "query": {
        "match": {
          "last_name": "smith"
        }
      },
      "aggs": {
        "all_interests": {
          "terms": {
            "field": "interests"
          }
        }
      }
    }
    

    all_interests聚合已经变成只包含和查询语句相匹配的文档了:

      ...
      "all_interests": {
         "buckets": [
            {
               "key": "music",
               "doc_count": 2
            },
            {
               "key": "sports",
               "doc_count": 1
            }
         ]
      }
    

    聚合也允许分级汇总。例如,让我们统计每种兴趣下职员的平均年龄:

    GET /megacorp/employee/_search
    {
        "aggs" : {
            "all_interests" : {
                "terms" : { "field" : "interests" },
                "aggs" : {
                    "avg_age" : {
                        "avg" : { "field" : "age" }
                    }
                }
            }
        }
    }
    

    虽然这次返回的聚合结果有些复杂,但任然很容易理解:

      ...
      "all_interests": {
         "buckets": [
            {
               "key": "music",
               "doc_count": 2,
               "avg_age": {
                  "value": 28.5
               }
            },
            {
               "key": "forestry",
               "doc_count": 1,
               "avg_age": {
                  "value": 35
               }
            },
            {
               "key": "sports",
               "doc_count": 1,
               "avg_age": {
                  "value": 25
               }
            }
         ]
      }
    

    该聚合结果比之前的聚合结果要更加丰富。我们依然得到了兴趣以及数量(指具有该兴趣的员工人数)的列表,但是现在每个兴趣额外拥有avg_age字段来显示具有该兴趣员工的平均年龄

    即使你还不理解语法,但你也可以大概感觉到通过这个特性可以完成相当复杂的聚合工作,你可以处理任何类型的数据。
    更多介绍请查看官方文档。

  • 相关阅读:
    datagridview 查询数据库数据
    java 类属性的加载顺序(带有继承关系的)
    jquery控制checkbox
    dataTable获取全部输入的数据(不仅是页面中展示出来的)
    java.security.Key 在main方法中与在tomcat中得到的encode不同,why?
    java代理模式
    android webservice交互开发
    完成oracle数据分页功能
    android 接收服务端 oracle数据中存储的blob对象 转化为图像
    JSON使用详解
  • 原文地址:https://www.cnblogs.com/jatpeo/p/11767475.html
Copyright © 2011-2022 走看看