zoukankan      html  css  js  c++  java
  • POJ1584:A Round Peg in a Ground Hole(叉积,凸包) java程序员

    A Round Peg in a Ground Hole
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 4098   Accepted: 1246

    Description

    The DIY Furniture company specializes in assemble-it-yourself furniture kits. Typically, the pieces of wood are attached to one another using a wooden peg that fits into pre-cut holes in each piece to be attached. The pegs have a circular cross-section and so are intended to fit inside a round hole.
    A recent factory run of computer desks were flawed when an automatic grinding machine was mis-programmed. The result is an irregularly shaped hole in one piece that, instead of the expected circular shape, is actually an irregular polygon. You need to figure out whether the desks need to be scrapped or if they can be salvaged by filling a part of the hole with a mixture of wood shavings and glue.
    There are two concerns. First, if the hole contains any protrusions (i.e., if there exist any two interior points in the hole that, if connected by a line segment, that segment would cross one or more edges of the hole), then the filled-in-hole would not be structurally sound enough to support the peg under normal stress as the furniture is used. Second, assuming the hole is appropriately shaped, it must be big enough to allow insertion of the peg. Since the hole in this piece of wood must match up with a corresponding hole in other pieces, the precise location where the peg must fit is known.
    Write a program to accept descriptions of pegs and polygonal holes and determine if the hole is ill-formed and, if not, whether the peg will fit at the desired location. Each hole is described as a polygon with vertices (x1, y1), (x2, y2), . . . , (xn, yn). The edges of the polygon are (xi, yi) to (xi+1, yi+1) for i = 1 . . . n − 1 and (xn, yn) to (x1, y1).

    Input

    Input consists of a series of piece descriptions. Each piece description consists of the following data:
    Line 1 < nVertices > < pegRadius > < pegX > < pegY >
    number of vertices in polygon, n (integer)
    radius of peg (real)
    X and Y position of peg (real)
    n Lines < vertexX > < vertexY >
    On a line for each vertex, listed in order, the X and Y position of vertex The end of input is indicated by a number of polygon vertices less than 3.

    Output

    For each piece description, print a single line containing the string:
    HOLE IS ILL-FORMED if the hole contains protrusions
    PEG WILL FIT if the hole contains no protrusions and the peg fits in the hole at the indicated position
    PEG WILL NOT FIT if the hole contains no protrusions but the peg will not fit in the hole at the indicated position

    Sample Input

    5 1.5 1.5 2.0
    1.0 1.0
    2.0 2.0
    1.75 2.0
    1.0 3.0
    0.0 2.0
    5 1.5 1.5 2.0
    1.0 1.0
    2.0 2.0
    1.75 2.5
    1.0 3.0
    0.0 2.0
    1

    Sample Output

    HOLE IS ILL-FORMED
    PEG WILL NOT FIT

    Source

    MYCode:

    #include<iostream>
    #include<cstring>
    #include<cstdio>
    #include<cmath>
    #include<algorithm>
    #define inf 100000000
    using namespace std;
    #define MAX 1010
    struct node
    {
        double x,y;
    }a[MAX];
    node tp[MAX];
    node center;
    double r;
    node p;
    double cw(node a,node b,node c)
    {
        return (b.x-a.x)*(c.y-a.y)-(c.x-a.x)*(b.y-a.y);
    }
    double dist(node a,node b)
    {
        return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
    }
    double dist(node a,node b,node c)
    {
        double d=dist(a,b);
        double res=cw(a,b,c);
        return fabs(res/d);
    }
    bool cmp(node a,node b)
    {
        double ans=cw(p,a,b);
        if(ans!=0)return cw(p,a,b)>0;
        else return dist(p,a)>dist(p,b);//note
    }
    int main()
    {
        int n;
        while(scanf("%d",&n)!=EOF)
        {
            if(n<3)
            break;
            scanf("%lf%lf%lf",&r,&center.x,&center.y);
            int i;
            for(i=0;i<n;i++)
            {
                scanf("%lf%lf",&a[i].x,&a[i].y);
            }
            bool flag=true;
            double dirt=0;
            for(i=0;i<n-1;i++)
            {
                if(cw(a[i],a[i+1],a[(i+2)%n])!=0)
                {
                    if(dirt==0)
                    dirt=cw(a[i],a[i+1],a[(i+2)%n]);
                    else if(cw(a[i],a[i+1],a[(i+2)%n])>0&&dirt<0
                    ||cw(a[i],a[i+1],a[(i+2)%n])<0&&dirt>0)
                    {
                        flag=false;
                        break;
                    }
                }
            }
            if(flag==false)
            {
                printf("HOLE IS ILL-FORMED\n");
                continue;
            }
            for(i=0;i<n;i++)
            {
                double d=dist(a[i],a[(i+1)%n],center);
                double res=cw(a[i],a[(i+1)%n],center);
                if(d<r||res<0&&dirt>0
                ||res>0&&dirt<0||res==0)
                {
                    flag=false;
                    break;
                }
            }
            if(!flag)
            {
                printf("PEG WILL NOT FIT\n");
            }
            else
            printf("PEG WILL FIT\n");
        }
    }

    //

    首先要判断多边形是否凸包.

    由于题目是按照顺时针或逆时针方向给出所有点,所以不需要对所有点进行排序

    使用叉积判断凸包

    允许多点共线情况的存在

    陷阱是:

    圆心可能不在多边形内部

    要求出圆心到多边形各边的距离,所有边的距离都要大于半径

    求点到线段的距离的方法:利用叉积

  • 相关阅读:
    os.remove some jpgs
    shutil.rmtree, os.path, delete sub-folders, format
    How to create folder
    valgrind
    gstream
    TP TN FP FN
    tensor flow
    接口中静态方法和默认方法
    JAVA基础09
    JAVA基础08
  • 原文地址:https://www.cnblogs.com/java20130725/p/3215876.html
Copyright © 2011-2022 走看看