zoukankan      html  css  js  c++  java
  • UVA 303 Pipe

    点击打开链接

    题意:

    求光线能达到的最大横坐标

    注意光线可以和管道重合

    也可以经过转折点

    解法:

    枚举每种光线是否能通过每个转折点的截面(线段)即可

    //大白p263
    #include <cmath>
    #include <cstdio>
    #include <cstring>
    #include <string>
    #include <queue>
    #include <functional>
    #include <set>
    #include <iostream>
    #include <vector>
    #include <algorithm>
    using namespace std;
    const double eps=1e-8;//精度
    const int INF=1<<29;
    const double PI=acos(-1.0);
    int dcmp(double x){//判断double等于0或。。。
        if(fabs(x)<eps)return 0;else return x<0?-1:1;
    }
    struct Point{
        double x,y;
        Point(double x=0,double y=0):x(x),y(y){}
    };
    typedef Point Vector;
    typedef vector<Point> Polygon;
    Vector operator+(Vector a,Vector b){return Vector(a.x+b.x,a.y+b.y);}//向量+向量=向量
    Vector operator-(Point a,Point b){return Vector(a.x-b.x,a.y-b.y);}//点-点=向量
    Vector operator*(Vector a,double p){return Vector(a.x*p,a.y*p);}//向量*实数=向量
    Vector operator/(Vector a,double p){return Vector(a.x/p,a.y/p);}//向量/实数=向量
    bool operator<( const Point& A,const Point& B ){return dcmp(A.x-B.x)<0||(dcmp(A.x-B.x)==0&&dcmp(A.y-B.y)<0);}
    bool operator==(const Point&a,const Point&b){return dcmp(a.x-b.x)==0&&dcmp(a.y-b.y)==0;}
    bool operator!=(const Point&a,const Point&b){return a==b?false:true;}
    struct Segment{
        Point a,b;
        Segment(){}
        Segment(Point _a,Point _b){a=_a,b=_b;}
        bool friend operator<(const Segment& p,const Segment& q){return p.a<q.a||(p.a==q.a&&p.b<q.b);}
        bool friend operator==(const Segment& p,const Segment& q){return (p.a==q.a&&p.b==q.b)||(p.a==q.b&&p.b==q.a);}
    };
    struct Circle{
        Point c;
        double r;
        Circle(){}
        Circle(Point _c, double _r):c(_c),r(_r) {}
        Point point(double a)const{return Point(c.x+cos(a)*r,c.y+sin(a)*r);}
        bool friend operator<(const Circle& a,const Circle& b){return a.r<b.r;}
    };
    struct Line{
        Point p;
        Vector v;
        double ang;
        Line() {}
        Line(const Point &_p, const Vector &_v):p(_p),v(_v){ang = atan2(v.y, v.x);}
        bool operator<(const Line &L)const{return  ang < L.ang;}
    };
    double Dot(Vector a,Vector b){return a.x*b.x+a.y*b.y;}//|a|*|b|*cosθ 点积
    double Length(Vector a){return sqrt(Dot(a,a));}//|a| 向量长度
    double Angle(Vector a,Vector b){return acos(Dot(a,b)/Length(a)/Length(b));}//向量夹角θ
    double Cross(Vector a,Vector b){return a.x*b.y-a.y*b.x;}//叉积 向量围成的平行四边形的面积
    double Area2(Point a,Point b,Point c){return Cross(b-a,c-a);}//同上 参数为三个点
    double DegreeToRadius(double deg){return deg/180*PI;}
    double GetRerotateAngle(Vector a,Vector b){//向量a顺时针旋转theta度得到向量b的方向
        double tempa=Angle(a,Vector(1,0));
        if(a.y<0) tempa=2*PI-tempa;
        double tempb=Angle(b,Vector(1,0));
        if(b.y<0) tempb=2*PI-tempb;
        if((tempa-tempb)>0) return tempa-tempb;
        else return tempa-tempb+2*PI;
    }
    double torad(double deg){return deg/180*PI;}//角度化为弧度
    Vector Rotate(Vector a,double rad){//向量逆时针旋转rad弧度
        return Vector(a.x*cos(rad)-a.y*sin(rad),a.x*sin(rad)+a.y*cos(rad));
    }
    Vector Normal(Vector a){//计算单位法线
        double L=Length(a);
        return Vector(-a.y/L,a.x/L);
    }
    Point GetLineProjection(Point p,Point a,Point b){//点在直线上的投影
        Vector v=b-a;
        return a+v*(Dot(v,p-a)/Dot(v,v));
    }
    Point GetLineIntersection(Point p,Vector v,Point q,Vector w){//求直线交点 有唯一交点时可用
        Vector u=p-q;
        double t=Cross(w,u)/Cross(v,w);
        return p+v*t;
    }
    int ConvexHull(Point* p,int n,Point* sol){//计算凸包
        sort(p,p+n);
        int m=0;
        for(int i=0;i<n;i++){
            while(m>1&&Cross(sol[m-1]-sol[m-2],p[i]-sol[m-2])<=0) m--;
            sol[m++]=p[i];
        }
        int k=m;
        for(int i=n-2;i>=0;i--){
            while(m>k&&Cross(sol[m-1]-sol[m-2],p[i]-sol[m-2])<=0) m--;
            sol[m++]=p[i];
        }
        if(n>0) m--;
        return m;
    }
    double Heron(double a,double b,double c){//海伦公式
        double p=(a+b+c)/2;
        return sqrt(p*(p-a)*(p-b)*(p-c));
    }
    bool SegmentProperIntersection(Point a1,Point a2,Point b1,Point b2){//线段规范相交判定
        double c1=Cross(a2-a1,b1-a1),c2=Cross(a2-a1,b2-a1);
        double c3=Cross(b2-b1,a1-b1),c4=Cross(b2-b1,a2-b1);
        return dcmp(c1)*dcmp(c2)<0&&dcmp(c3)*dcmp(c4)<0;
    }
    double CutConvex(const int n,Point* poly, const Point a,const Point b, vector<Point> result[3]){//有向直线a b 切割凸多边形
        vector<Point> points;
        Point p;
        Point p1=a,p2=b;
        int cur,pre; 
        result[0].clear(); 
        result[1].clear(); 
        result[2].clear();
        if(n==0) return 0;
        double tempcross;
        tempcross=Cross(p2-p1,poly[0]-p1);
        if(dcmp(tempcross)==0) pre=cur=2;
        else if(tempcross>0) pre=cur=0;
        else pre=cur=1;
        for(int i=0;i<n;i++){
            tempcross=Cross(p2-p1,poly[(i+1)%n]-p1);
            if(dcmp(tempcross)==0) cur=2;
            else if(tempcross>0) cur=0;
            else cur=1;
            if(cur==pre){
                result[cur].push_back(poly[(i+1)%n]); 
            }
            else{
                p1=poly[i]; 
                p2=poly[(i+1)%n];
                p=GetLineIntersection(p1,p2-p1,a,b-a);
                points.push_back(p); 
                result[pre].push_back(p); 
                result[cur].push_back(p); 
                result[cur].push_back(poly[(i+1)%n]); 
                pre=cur;
            }
        }
        sort(points.begin(),points.end());
        if(points.size()<2){
            return 0; 
        }
        else{
            return Length(points.front()-points.back());
        }
    }
    double DistanceToSegment(Point p,Segment s){//点到线段的距离
        if(s.a==s.b) return Length(p-s.a);
        Vector v1=s.b-s.a,v2=p-s.a,v3=p-s.b;
        if(dcmp(Dot(v1,v2))<0) return Length(v2);
        else if(dcmp(Dot(v1,v3))>0) return Length(v3);
        else return fabs(Cross(v1,v2))/Length(v1);
    }
    bool isPointOnSegment(Point p,Segment s){
    	return Cross(s.a-p,s.b-p)==0&&Dot(s.a-p,s.b-p)<0;
    }
    int isPointInPolygon(Point p, Point* poly,int n){//点与多边形的位置关系
        int wn=0;
        for(int i=0;i<n;i++){
            Point& p2=poly[(i+1)%n];
            if(isPointOnSegment(p,Segment(poly[i],p2))) return -1;//点在边界上
            int k=dcmp(Cross(p2-poly[i],p-poly[i]));
            int d1=dcmp(poly[i].y-p.y);
            int d2=dcmp(p2.y-p.y);
            if(k>0&&d1<=0&&d2>0)wn++;
            if(k<0&&d2<=0&&d1>0)wn--;
        }
        if(wn) return 1;//点在内部
        else return 0;//点在外部
    }
    double PolygonArea(vector<Point> p){//多边形有向面积
        double area=0;
        int n=p.size();
        for(int i=1;i<n-1;i++)
            area+=Cross(p[i]-p[0],p[i+1]-p[0]);
        return area/2;
    }
    int GetLineCircleIntersection(Line L,Circle C,Point& p1,Point& p2){//圆与直线交点 返回交点个数
        double a = L.v.x, b = L.p.x - C.c.x, c = L.v.y, d = L.p.y-C.c.y;
        double e = a*a + c*c, f = 2*(a*b+c*d), g = b*b + d*d -C.r*C.r;
        double delta = f*f - 4*e*g;
        if(dcmp(delta) < 0)  return 0;//相离
        if(dcmp(delta) == 0) {//相切
            p1=p1=C.point(-f/(2*e));
            return 1;
        }//相交
        p1=(L.p+L.v*(-f-sqrt(delta))/(2*e));
        p2=(L.p+L.v*(-f+sqrt(delta))/(2*e));
        return 2;
    }
    double rotating_calipers(Point *ch,int n)//旋转卡壳
    {
        int q=1;
        double ans=0;
        ch[n]=ch[0];
        for(int p=0;p<n;p++)
        {
            while(Cross(ch[q+1]-ch[p+1],ch[p]-ch[p+1])>Cross(ch[q]-ch[p+1],ch[p]-ch[p+1]))
                q=(q+1)%n;
            ans=max(ans,max(Length(ch[p]-ch[q]),Length(ch[p+1]-ch[q+1])));
        }
        return ans;
    }
    Polygon CutPolygon(Polygon poly,Point a,Point b){//用a->b切割多边形 返回左侧
        Polygon newpoly;
        int n=poly.size();
        for(int i=0;i<n;i++){
            Point c=poly[i];
            Point d=poly[(i+1)%n];
            if(dcmp(Cross(b-a,c-a))>=0) newpoly.push_back(c);
            if(dcmp(Cross(b-a,c-d))!=0){
                Point ip=GetLineIntersection(a,b-a,c,d-c);
                if(isPointOnSegment(ip,Segment(c,d))) newpoly.push_back(ip);
            }
        }
        return newpoly;
    }
    int GetCircleCircleIntersection(Circle c1,Circle c2,Point& p1,Point& p2){
    	double d=Length(c1.c-c2.c);
    	if(dcmp(d)==0){
    		if(dcmp(c1.r-c2.r)==0) return -1;//两圆重合
    		return 0;
    	}
    	if(dcmp(c1.r+c2.r-d)<0) return 0;
    	if(dcmp(fabs(c1.r-c2.r)-d)>0) return 0;
    	double a=Angle(c2.c-c1.c,Vector(1,0));
    	double da=acos((c1.r*c1.r+d*d-c2.r*c2.r)/(2*c1.r*d));
    	p1=c1.point(a-da);p2=c1.point(a+da);
    	if(p1==p2) return 1;
    	return 2;
    }
    //--------------------------------------
    //--------------------------------------
    //--------------------------------------
    //--------------------------------------
    //--------------------------------------
    int n;
    Point arr[25],arr2[25];
    double fuck(Line l){
    	Point p;
    	int i;
    	for(i=0;i<n;i++){
    		p=GetLineIntersection(l.p,l.v,arr[i],arr2[i]-arr[i]);
    		if(dcmp(p.y-arr[i].y)>0||dcmp(p.y-arr2[i].y)<0){
    			if(i==0) return arr[0].x;
    			Point q=GetLineIntersection(l.p,l.v,arr[i],arr[i]-arr[i-1]);
    			p=GetLineIntersection(l.p,l.v,arr2[i],arr2[i]-arr2[i-1]);
    			return max(p.x,q.x);
    		}
    	}
    	return arr[n-1].x;
    }
    int main()
    {
    	while(scanf("%d",&n)!=EOF&&n){
    		for(int i=0;i<n;i++){
    			scanf("%lf%lf",&arr[i].x,&arr[i].y);
    			arr2[i].x=arr[i].x;
    			arr2[i].y=arr[i].y-1;
    		}
    		double ans=arr[0].x;
    		for(int i=0;i<n;i++){
    			for(int j=0;j<n;j++)if(i!=j){
    				Line l1(arr[i],arr[i]-arr2[j]);
    				ans=max(ans,fuck(l1));
    			}
    		}
    		if(dcmp(ans-arr[n-1].x)<0) printf("%.2lf
    ",ans);
    		else puts("Through all the pipe.");
    	}
    	return 0;
    }


     

  • 相关阅读:
    SAP S/4HANA extensibility扩展原理介绍
    SAP CRM系统订单模型的设计与实现
    使用nodejs代码在SAP C4C里创建Individual customer
    SAP Cloud for Customer Account和individual customer的区别
    Let the Balloon Rise map一个数组
    How Many Tables 简单并查集
    Heap Operations 优先队列
    Arpa’s obvious problem and Mehrdad’s terrible solution 思维
    Passing the Message 单调栈两次
    The Suspects 并查集
  • 原文地址:https://www.cnblogs.com/javawebsoa/p/3249222.html
Copyright © 2011-2022 走看看