zoukankan      html  css  js  c++  java
  • [LeetCode] Longest Consecutive Sequence

    This problem is not very intuitive at first glance. However, the final idea should be very self-explanatory. You visit each element in nums, and then find its left and right neighbors and extend the length accordingly. The time complexity is O(n) if we guard from visiting the same element again.

    You can implement it using an unordered_set or unordered_map.

    The code is as follows. The last one is taken from this page which includes a nice explanation in the follong answers.

     1 // O(n) solution using unordered_set
     2 int longestConsecutive(vector<int>& nums) {
     3     unordered_set<int> copy(nums.begin(), nums.end());
     4     unordered_set<int> filter;
     5     int len = 0;
     6     for (int i = 0; i < nums.size(); i++) {
     7         if (filter.find(nums[i]) != filter.end()) continue;
     8         int l = nums[i] - 1, r = nums[i] + 1;
     9         while (copy.find(l) != copy.end()) filter.insert(l--);
    10         while (copy.find(r) != copy.end()) filter.insert(r++);
    11         len = max(len, r - l - 1);
    12     }
    13     return len;
    14 }
    15 
    16 // O(n) solution using unordered_map
    17 int longestConsecutive(vector<int>& nums) {
    18     unordered_map<int, int> mp;
    19     int len = 0;
    20     for (int i = 0; i < nums.size(); i++) {
    21         if (mp[nums[i]]) continue;
    22         mp[nums[i]] = 1;
    23         if (mp.find(nums[i] - 1) != mp.end())
    24             mp[nums[i]] += mp[nums[i] - 1];
    25         if (mp.find(nums[i] + 1) != mp.end())
    26             mp[nums[i]] += mp[nums[i] + 1];
    27         mp[nums[i] - mp[nums[i] - 1]] = mp[nums[i]]; // left boundary
    28         mp[nums[i] + mp[nums[i] + 1]] = mp[nums[i]]; // right boundary
    29         len = max(len, mp[nums[i]]);
    30     }
    31     return len;
    32 }
    33 
    34 // O(n) super-concise solution (merging the above cases)
    35 int longestConsecutive(vector<int>& nums) {
    36     unordered_map<int, int> mp;
    37     int len = 0;
    38     for (int i = 0; i < nums.size(); i++) {
    39         if (mp[nums[i]]) continue;
    40         len = max(len, mp[nums[i]] = mp[nums[i] - mp[nums[i] - 1]] = mp[nums[i] + mp[nums[i] + 1]] = mp[nums[i] - 1] + mp[nums[i] + 1] + 1);
    41     }
    42     return len;
    43 }
  • 相关阅读:
    windows10 ubuntu子系统 WSL文件位置
    cs231n assignment1 KNN
    欧拉计划第五题
    欧拉计划第三题
    梯度下降入门
    Linux交换Esc和Caps
    Python实现bp神经网络识别MNIST数据集
    7-2一元多项式的乘法与加法运算
    Python实现图像直方图均衡化算法
    Python实现图像边缘检测算法
  • 原文地址:https://www.cnblogs.com/jcliBlogger/p/4572028.html
Copyright © 2011-2022 走看看