zoukankan      html  css  js  c++  java
  • [LeetCode] Longest Consecutive Sequence

    This problem is not very intuitive at first glance. However, the final idea should be very self-explanatory. You visit each element in nums, and then find its left and right neighbors and extend the length accordingly. The time complexity is O(n) if we guard from visiting the same element again.

    You can implement it using an unordered_set or unordered_map.

    The code is as follows. The last one is taken from this page which includes a nice explanation in the follong answers.

     1 // O(n) solution using unordered_set
     2 int longestConsecutive(vector<int>& nums) {
     3     unordered_set<int> copy(nums.begin(), nums.end());
     4     unordered_set<int> filter;
     5     int len = 0;
     6     for (int i = 0; i < nums.size(); i++) {
     7         if (filter.find(nums[i]) != filter.end()) continue;
     8         int l = nums[i] - 1, r = nums[i] + 1;
     9         while (copy.find(l) != copy.end()) filter.insert(l--);
    10         while (copy.find(r) != copy.end()) filter.insert(r++);
    11         len = max(len, r - l - 1);
    12     }
    13     return len;
    14 }
    15 
    16 // O(n) solution using unordered_map
    17 int longestConsecutive(vector<int>& nums) {
    18     unordered_map<int, int> mp;
    19     int len = 0;
    20     for (int i = 0; i < nums.size(); i++) {
    21         if (mp[nums[i]]) continue;
    22         mp[nums[i]] = 1;
    23         if (mp.find(nums[i] - 1) != mp.end())
    24             mp[nums[i]] += mp[nums[i] - 1];
    25         if (mp.find(nums[i] + 1) != mp.end())
    26             mp[nums[i]] += mp[nums[i] + 1];
    27         mp[nums[i] - mp[nums[i] - 1]] = mp[nums[i]]; // left boundary
    28         mp[nums[i] + mp[nums[i] + 1]] = mp[nums[i]]; // right boundary
    29         len = max(len, mp[nums[i]]);
    30     }
    31     return len;
    32 }
    33 
    34 // O(n) super-concise solution (merging the above cases)
    35 int longestConsecutive(vector<int>& nums) {
    36     unordered_map<int, int> mp;
    37     int len = 0;
    38     for (int i = 0; i < nums.size(); i++) {
    39         if (mp[nums[i]]) continue;
    40         len = max(len, mp[nums[i]] = mp[nums[i] - mp[nums[i] - 1]] = mp[nums[i] + mp[nums[i] + 1]] = mp[nums[i] - 1] + mp[nums[i] + 1] + 1);
    41     }
    42     return len;
    43 }
  • 相关阅读:
    6.html5分组元素
    STL基础--算法(修改数据的算法)
    STL基础--算法(不修改数据的算法)
    STL基础--仿函数(函数对象)
    STL基础--迭代器和算法
    STL基础--容器
    STL基础--基本介绍
    C++11--Tuple类<tuple>
    C++11--随机数引擎和随机数分布<random>
    C++11--时钟和计时器<chrono>
  • 原文地址:https://www.cnblogs.com/jcliBlogger/p/4572028.html
Copyright © 2011-2022 走看看