zoukankan      html  css  js  c++  java
  • [LeetCode] Longest Consecutive Sequence

    This problem is not very intuitive at first glance. However, the final idea should be very self-explanatory. You visit each element in nums, and then find its left and right neighbors and extend the length accordingly. The time complexity is O(n) if we guard from visiting the same element again.

    You can implement it using an unordered_set or unordered_map.

    The code is as follows. The last one is taken from this page which includes a nice explanation in the follong answers.

     1 // O(n) solution using unordered_set
     2 int longestConsecutive(vector<int>& nums) {
     3     unordered_set<int> copy(nums.begin(), nums.end());
     4     unordered_set<int> filter;
     5     int len = 0;
     6     for (int i = 0; i < nums.size(); i++) {
     7         if (filter.find(nums[i]) != filter.end()) continue;
     8         int l = nums[i] - 1, r = nums[i] + 1;
     9         while (copy.find(l) != copy.end()) filter.insert(l--);
    10         while (copy.find(r) != copy.end()) filter.insert(r++);
    11         len = max(len, r - l - 1);
    12     }
    13     return len;
    14 }
    15 
    16 // O(n) solution using unordered_map
    17 int longestConsecutive(vector<int>& nums) {
    18     unordered_map<int, int> mp;
    19     int len = 0;
    20     for (int i = 0; i < nums.size(); i++) {
    21         if (mp[nums[i]]) continue;
    22         mp[nums[i]] = 1;
    23         if (mp.find(nums[i] - 1) != mp.end())
    24             mp[nums[i]] += mp[nums[i] - 1];
    25         if (mp.find(nums[i] + 1) != mp.end())
    26             mp[nums[i]] += mp[nums[i] + 1];
    27         mp[nums[i] - mp[nums[i] - 1]] = mp[nums[i]]; // left boundary
    28         mp[nums[i] + mp[nums[i] + 1]] = mp[nums[i]]; // right boundary
    29         len = max(len, mp[nums[i]]);
    30     }
    31     return len;
    32 }
    33 
    34 // O(n) super-concise solution (merging the above cases)
    35 int longestConsecutive(vector<int>& nums) {
    36     unordered_map<int, int> mp;
    37     int len = 0;
    38     for (int i = 0; i < nums.size(); i++) {
    39         if (mp[nums[i]]) continue;
    40         len = max(len, mp[nums[i]] = mp[nums[i] - mp[nums[i] - 1]] = mp[nums[i] + mp[nums[i] + 1]] = mp[nums[i] - 1] + mp[nums[i] + 1] + 1);
    41     }
    42     return len;
    43 }
  • 相关阅读:
    ORA00600 [3756]内部错误一例
    使用ALTER SYSTEM运行OS命令
    Oracle 审计参数AUDIT_SYSLOG_LEVEL介绍
    其他:ADO.NET访问Oracle数据库存储过程的本质
    其他:数据库访问模型
    VB6:通过OO4O访问Oracle存储过程返回的结果集
    Oracle学习笔记:编译PL/SQL对象
    Sqlserver:不可忽视的@@servername
    26个导航设计非常独特的网站案例欣赏
    非常棒的Web标准学习资源推荐
  • 原文地址:https://www.cnblogs.com/jcliBlogger/p/4572028.html
Copyright © 2011-2022 走看看