zoukankan      html  css  js  c++  java
  • [LeetCode] Word Ladder

    Well, this problem has a nice BFS structure.

    Let's see the example in the problem statement.

    start = "hit"

    end = "cog"

    dict = ["hot", "dot", "dog", "lot", "log"]

    Since only one letter can be changed at a time, if we start from "hit", we can only change to those words which have only one different letter from it, like "hot". Putting in graph-theoretic terms, we can say that "hot" is a neighbor of "hit".

    The idea is simpy to begin from start, then visit its neighbors, then the non-visited neighbors of its neighbors... Well, this is just the typical BFS structure.

    To simplify the problem, we insert end into dict. Once we meet end during the BFS, we know we have found the answer. We maintain a variable ladder for the current distance of the transformation and update it by ladder++ once we finish a round of BFS search (note that it should fit the definition of the distance in the problem statement). Also, to avoid visiting a word for more than once, we erase it from dict once it is visited.

    The code is as follows.

     1 class Solution {
     2 public:
     3     int ladderLength(string beginWord, string endWord, unordered_set<string>& wordDict) {
     4         wordDict.erase(beginWord);
     5         wordDict.insert(endWord);
     6         int ladder = 2, len = beginWord.length();
     7         queue<string> nextWords;
     8         nextWords.push(beginWord);
     9         while (!nextWords.empty()) {
    10             int num = nextWords.size();
    11             for (int i = 0; i < num; i++) {
    12                 string word = nextWords.front();
    13                 nextWords.pop();
    14                 for (int p = 0; p < len; p++) {
    15                     char letter = word[p];
    16                     for (int j = 0; j < 26; j++) {
    17                         word[p] = 'a' + j;
    18                         if (wordDict.find(word) != wordDict.end()) {
    19                             if (word == endWord) return ladder;
    20                             wordDict.erase(word);
    21                             nextWords.push(word);
    22                         }
    23                     }
    24                     word[p] = letter;
    25                 }
    26             }
    27             ladder++;
    28         }
    29         return 0;
    30     }
    31 };

    The above code can still be speed up if we also begin from end. Once we meet the same word from start and end, we know we are done. This link provides a nice two-end search solution. I rewrite the code below for better readability. At each round of BFS, depending on the relative size of nextWords and prevWords, we swap the smaller one to the working setto reduce the running time (lines 12 - 13). 

     1 class Solution {
     2 public:
     3     int ladderLength(string beginWord, string endWord, unordered_set<string>& wordDict) {
     4         wordDict.erase(beginWord);
     5         wordDict.erase(endWord);
     6         unordered_set<string> nextWords;
     7         unordered_set<string> prevWords;
     8         nextWords.insert(beginWord);
     9         prevWords.insert(endWord);
    10         int ladder = 2, len = beginWord.length();
    11         while (!nextWords.empty() && !prevWords.empty()) {
    12             if (nextWords.size() > prevWords.size())
    13                 swap(nextWords, prevWords);
    14             unordered_set<string>::iterator itr = nextWords.begin();
    15             unordered_set<string> temp;
    16             for (; itr != nextWords.end(); itr++) {
    17                 string word = *itr;
    18                 for (int p = 0; p < len; p++) {
    19                     char letter = word[p];
    20                     for (int j = 0; j < 26; j++) {
    21                         word[p] = 'a' + j;
    22                         if (prevWords.find(word) != prevWords.end())
    23                             return ladder;
    24                         if (wordDict.find(word) != wordDict.end()) {
    25                             temp.insert(word);
    26                             wordDict.erase(word);
    27                         }
    28                     }
    29                     word[p] = letter;
    30                 }
    31             }
    32             swap(nextWords, temp);
    33             ladder++;
    34         }
    35         return 0;
    36     }
    37 };
  • 相关阅读:
    GeoHash核心原理解析
    线程安全与可重入函数
    malloc和free的实现
    数字金字塔最大路径和——递归
    TCP连接建立与断开
    Gray Code
    C压缩字符串中的空格
    C++链接与装载
    epoll测试实例
    C++之手写strlen函数
  • 原文地址:https://www.cnblogs.com/jcliBlogger/p/4599041.html
Copyright © 2011-2022 走看看