zoukankan      html  css  js  c++  java
  • [LeetCode] Word Ladder

    Well, this problem has a nice BFS structure.

    Let's see the example in the problem statement.

    start = "hit"

    end = "cog"

    dict = ["hot", "dot", "dog", "lot", "log"]

    Since only one letter can be changed at a time, if we start from "hit", we can only change to those words which have only one different letter from it, like "hot". Putting in graph-theoretic terms, we can say that "hot" is a neighbor of "hit".

    The idea is simpy to begin from start, then visit its neighbors, then the non-visited neighbors of its neighbors... Well, this is just the typical BFS structure.

    To simplify the problem, we insert end into dict. Once we meet end during the BFS, we know we have found the answer. We maintain a variable ladder for the current distance of the transformation and update it by ladder++ once we finish a round of BFS search (note that it should fit the definition of the distance in the problem statement). Also, to avoid visiting a word for more than once, we erase it from dict once it is visited.

    The code is as follows.

     1 class Solution {
     2 public:
     3     int ladderLength(string beginWord, string endWord, unordered_set<string>& wordDict) {
     4         wordDict.erase(beginWord);
     5         wordDict.insert(endWord);
     6         int ladder = 2, len = beginWord.length();
     7         queue<string> nextWords;
     8         nextWords.push(beginWord);
     9         while (!nextWords.empty()) {
    10             int num = nextWords.size();
    11             for (int i = 0; i < num; i++) {
    12                 string word = nextWords.front();
    13                 nextWords.pop();
    14                 for (int p = 0; p < len; p++) {
    15                     char letter = word[p];
    16                     for (int j = 0; j < 26; j++) {
    17                         word[p] = 'a' + j;
    18                         if (wordDict.find(word) != wordDict.end()) {
    19                             if (word == endWord) return ladder;
    20                             wordDict.erase(word);
    21                             nextWords.push(word);
    22                         }
    23                     }
    24                     word[p] = letter;
    25                 }
    26             }
    27             ladder++;
    28         }
    29         return 0;
    30     }
    31 };

    The above code can still be speed up if we also begin from end. Once we meet the same word from start and end, we know we are done. This link provides a nice two-end search solution. I rewrite the code below for better readability. At each round of BFS, depending on the relative size of nextWords and prevWords, we swap the smaller one to the working setto reduce the running time (lines 12 - 13). 

     1 class Solution {
     2 public:
     3     int ladderLength(string beginWord, string endWord, unordered_set<string>& wordDict) {
     4         wordDict.erase(beginWord);
     5         wordDict.erase(endWord);
     6         unordered_set<string> nextWords;
     7         unordered_set<string> prevWords;
     8         nextWords.insert(beginWord);
     9         prevWords.insert(endWord);
    10         int ladder = 2, len = beginWord.length();
    11         while (!nextWords.empty() && !prevWords.empty()) {
    12             if (nextWords.size() > prevWords.size())
    13                 swap(nextWords, prevWords);
    14             unordered_set<string>::iterator itr = nextWords.begin();
    15             unordered_set<string> temp;
    16             for (; itr != nextWords.end(); itr++) {
    17                 string word = *itr;
    18                 for (int p = 0; p < len; p++) {
    19                     char letter = word[p];
    20                     for (int j = 0; j < 26; j++) {
    21                         word[p] = 'a' + j;
    22                         if (prevWords.find(word) != prevWords.end())
    23                             return ladder;
    24                         if (wordDict.find(word) != wordDict.end()) {
    25                             temp.insert(word);
    26                             wordDict.erase(word);
    27                         }
    28                     }
    29                     word[p] = letter;
    30                 }
    31             }
    32             swap(nextWords, temp);
    33             ladder++;
    34         }
    35         return 0;
    36     }
    37 };
  • 相关阅读:
    Android应用开发之避免内存泄露
    史上最经典的数据库面试题之二
    某大型银行深化系统之二十一:Log4j执行性能
    ruby支持批量数组的定义
    为VIM提供python代码提示功能
    使用win7登陆远程机器时自动保存密码
    安装Beanstalk
    在linux下安装或者卸载nginx
    python的数据类型
    使Ruby自动定位查找本地路径
  • 原文地址:https://www.cnblogs.com/jcliBlogger/p/4599041.html
Copyright © 2011-2022 走看看